scholarly journals Polyvinylidene Fluoride Membrane with a Polyvinylpyrrolidone Additive for Tofu Industrial Wastewater Treatment in Combination with the Coagulation–Flocculation Process

Membranes ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 948
Author(s):  
Irfan Purnawan ◽  
Derryadi Angputra ◽  
Septiana Crista Debora ◽  
Eva Fathul Karamah ◽  
Arifina Febriasari ◽  
...  

Wastewater from the tofu industry contains many pollutants that are very harmful to the environment, significantly endangering aquatic life and producing a pungent odor. This study aims to prepare a polyvinylidene fluoride (PVDF) membrane with the additive polyvinylpyrrolidone (PVP), and utilize it to treat tofu wastewater in the ultrafiltration (UF) process. Flat sheet membranes were prepared using PVDF that was dissolved in N,N-dimethylacetamide (DMAc) and then combined with the additive material of PVP at the varying compositions of 14.9/0.1, 14.85/0.15, and 14.8/0.2 g of PVDF/gram of PVP. The addition of PVP was proposed to improve the properties of the membranes. Characterization by scanning electron microscope (SEM), water contact angle, and Fourier transform infrared spectroscopy (FTIR) were performed on the PVDF/PVP membrane flat sheet in order to understand and compare changes in the physical and chemical properties that occurred in the membrane. Prior to the UF process, the tofu wastewater was treated by a coagulation–flocculation process through a jar tester using poly aluminum chloride (PAC) as a coagulant. Based on the membrane characterization, the addition of PVP improved the physical and chemical properties of membranes. The pore size of the membrane becomes larger, which could increase permeability as well as the flux value. The TSS and turbidity of the water produced in the UF process decreased with an increase in feed pressure due to a greater driving force generated to facilitate the penetration of the suspended solids. The UF results showed that the effect of PVP on water flux was greatest for the 14.85/0.15 PVDF/PVP membrane for both pure and wastewater. In addition, the highest percentage of rejection for TSS and turbidity were observed in the 14.9/0.1 PVDF/PVP membrane and rejection for TDS was indicated in the 14.8/0.2 PVDF/PVP membrane. Meanwhile, the resulting pH decreased slightly across all samples as feed pressure increased.

2012 ◽  
Vol 9 (75) ◽  
pp. 2450-2456 ◽  
Author(s):  
Ilaria Rea ◽  
Paola Giardina ◽  
Sara Longobardi ◽  
Fabrizio Porro ◽  
Valeria Casuscelli ◽  
...  

Hydrophobins are small proteins secreted by fungi, which self-assemble into amphipathic membranes at air–liquid or liquid–solid interfaces. The physical and chemical properties of some hydrophobins, both in solution and as a biofilm, are affected by poly or oligosaccharides. We have studied the interaction between glucose and the hydrophobin Vmh2 from Pleurotus ostreatus by spectroscopic ellipsometry (SE), atomic force microscopy (AFM) and water contact angle (WCA). We have found that Vmh2–glucose complexes forms a chemically stable biofilm, obtained by drop deposition on silicon, 1.6 nm thick and containing 35 per cent of glucose, quantified by SE. AFM highlighted the presence of nanometric rodlet-like aggregates (average height, width and length being equal to 3.6, 23.8 and 40 nm, respectively) on the biofilm surface, slightly different from those obtained in the absence of glucose (4.11, 23.9 and 64 nm). The wettability of a silicon surface, covered by the organic layer of Vmh2–glucose, strongly changed: WCA decreased from 90° down to 17°.


1966 ◽  
Vol 24 ◽  
pp. 101-110
Author(s):  
W. Iwanowska

In connection with the spectrophotometric study of population-type characteristics of various kinds of stars, a statistical analysis of kinematical and distribution parameters of the same stars is performed at the Toruń Observatory. This has a twofold purpose: first, to provide a practical guide in selecting stars for observing programmes, second, to contribute to the understanding of relations existing between the physical and chemical properties of stars and their kinematics and distribution in the Galaxy.


2017 ◽  
pp. 31-43
Author(s):  
Berta Ratilla ◽  
Loreme Cagande ◽  
Othello Capuno

Organic farming is one of the management strategies that improve productivity of marginal uplands. The study aimed to: (1) evaluate effects of various organic-based fertilizers on the growth and yield of corn; (2) determine the appropriate combination for optimum yield; and (3) assess changes on the soil physical and chemical properties. Experiment was laid out in Randomized Complete Block Design, with 3 replications and 7 treatments, namely; T0=(0-0-0); T1=1t ha-1 Evans + 45-30-30kg N, P2O5, K2O ha-1; T2=t ha-1 Wellgrow + 45-30-30kg N, P2O5, K2O ha-1; T3=15t ha-1 chicken dung; T4=10t ha-1 chicken dung + 45-30-30kg N, P2O5, K2O ha-1; T5=15t ha-1 Vermicast; and T6=10t ha-1 Vermicast + 45-30-30kg N, P2O5, K2O ha-1. Application of organic-based fertilizers with or without inorganic fertilizers promoted growth of corn than the control. But due to high infestation of corn silk beetle(Monolepta bifasciata Horns), its grain yield was greatly affected. In the second cropping, except for Evans, any of these fertilizers applied alone or combined with 45-30-30kg N, P2O5, K2O ha-1 appeared appropriate in increasing corn earyield. Soil physical and chemical properties changed with addition of organic fertilizers. While bulk density decreased irrespective of treatments, pH, total N, available P and exchangeable K generally increased more with chicken dung application.


Sign in / Sign up

Export Citation Format

Share Document