scholarly journals Role of Cellulose Micro and Nano Crystals in Thin Film and Support Layer of Nanocomposite Membranes for Brackish Water Desalination

Membranes ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 101 ◽  
Author(s):  
Mohammed Kadhom ◽  
Noor Albayati ◽  
Suhaib Salih ◽  
Mustafa Al-Furaiji ◽  
Mohamed Bayati ◽  
...  

Reverse osmosis is a major process that produces soft water from saline water, and its output represents the majority of the overall desalination plants production. Developing efficient membranes for this process is the aim of many research groups and companies. In this work, we studied the effect of adding cellulose micro crystals (CMCs) and cellulose nano crystals (CNCs) to the support layer and thin film nanocomposite (TFN) membrane on the desalination performance. SEM, TEM, ATR-FTIR, and contact angle measurements were used to characterize the membrane’s properties; and membrane’s performance were evaluated by water flux and NaCl rejection. Filling 2% of CNCs gel in the support layer improved the water flux by +40%, while salt rejection maintained almost the same, around 95%. However, no remarkable improvement was gained by adding CNCs gel to m-phenylenediamine (MPD) solution, which was used in TFN membrane preparation. Filling CMCs powder in TFN membrane led to a slight improvement in terms of water flux.

Membranes ◽  
2018 ◽  
Vol 8 (3) ◽  
pp. 66 ◽  
Author(s):  
Ahmed Al Mayyahi

In this study, TiO2 nanoparticles were inserted into the polyamide layer of traditional thin film composite membrane. The nanoparticles were dispersed in a trimesoyl chloride-hexane solution before interfacial polymerization with m-phenylenediamine-aqueous solution. Membrane characterization was performed via contact angle measurements, atomic force microscopy (AFM), scanning electron microscopy (SEM), and water flux, salt rejection, and fouling resistance evaluation. The results indicate that TiO2 could effectively improve membrane performance. Water flux increased from 40 to 65 L/m² h by increasing NPs concentration from 0 to 0.1 wt. %, while NaCl rejection was above 96%. Moreover, the modified membrane demonstrated better organic fouling resistance and robust antibacterial efficiency.


2019 ◽  
Vol 22 (3) ◽  
pp. 85-92 ◽  
Author(s):  
Aulia Rahma ◽  
Muthia Elma ◽  
Mahmud Mahmud ◽  
Chairul Irawan ◽  
Amalia Enggar Pratiwi ◽  
...  

The high number of natural organic matter contain in wetland water may cause its water has brown color and not consumable. In other hand, intrusion of sea water through wetland aquifer create water become saline, notably on hot season. Coagulation is effective method to applied for removing of natural organic matter. However, it could not be used for salinity removal. Hence combination of coagulation and pervaporation process is attractive method to removing both of natural organic matter and conductivity of wetland saline water. The objective of this works is to investigate optimum coagulant doses for removing organic matter by coagulation process as pretreatment and to analysis performance of coagulation-pervaporation silica-pectin membrane for removing of organic matter and conductivity of wetland saline water. Coagulation process in this work carried out under varied aluminum sulfate dose 10-60 mg.L-1. Silica-pectin membrane was used for pervaporation process at feed temperature ~25 °C (room temperature). Optimum condition of pretreatment coagulation set as alum dose at 30 mg.L-1 with maximum removal efficiency 81,8 % (UV254) and 40 % (conductivity). In other hand, combining of coagulation-pervaporation silica-pectin membrane shows both of UV254 and salt rejection extremely good instead without pretreatment coagulation of 86,8 % and 99,9 % for UV254 and salt rejection respectively. Moreover, water flux of silica-pectin membrane pervaporation with coagulation pretreatment shown higher 17,7 % over water flux of wetland saline water without pretreatment coagulation. Combining of coagulation and pervaporation silica-pectin membrane is effective to removing both of organic matter and salinity of wetland saline water at room temperature.


2013 ◽  
Vol 634-638 ◽  
pp. 755-758
Author(s):  
Liang Gong ◽  
Zhi Yuan Yang ◽  
Jiang Long

The surfaces of three China coals varying widely in coal type(Baode,Xiangshan,Jincheng) have been modified by adsorption of three surfactants( Sodium dodecyl sulfate,Polyethoxylated fatty alcohols,Alkyl phenol gather oxygen vinyl ether).The impact about coals of the surfactant has been explored by correlating three chemical characterisation techniques.Changes in coal surface hydrophobicity were assessed using contact angle measurements at the coal/water interface.The largest variation in zeta potential resulting from addition of surfactants was seen for the higher rank coals.The Specific surface area decreased when surfactants were present.


2016 ◽  
Vol 78 (12) ◽  
Author(s):  
C. Y. Chong ◽  
G. S. Lai ◽  
W. J. Lau ◽  
N. Yusof ◽  
P. S. Goh ◽  
...  

The membrane technology is still considered a costly method to produce potable water. In view of this, RO membrane with enhanced water permeability without trade-off in salt rejection is desirable as it could further reduce the cost for water desalination. In this study, thin film nanocomposite (TFN) membranes containing 0.05 or 0.10 w/v% hydrophilic nanofillers in polyamide layer were synthesized via interfacial polymerization of piperazine and trimesoyl chloride monomers. The resultant TFN membranes were characterized and compared with a control thin film composite (TFC) membrane. Results from the filtration experiments showed that TFN membranes exhibited higher water permeability, salt rejection and fouling resistance compared to that of the TFC membrane. Excessive amount of nanofillers incorporated in the membrane PA layer however negatively affected the cross-linking in the polymer matrix, thus deteriorating the membrane salt rejection. TFN membrane containing 0.05 w/v% of nanofillers showed better performances than the TFC membrane, recording a pure water flux of 11.2 L/m2∙h, and salt rejection of 95.4%, 97.3% and 97.5% against NaCl, Na2SO4 and MgSO4, respectively. 


Konversi ◽  
2020 ◽  
Vol 9 (2) ◽  
Author(s):  
Lilis Septyaningrum ◽  
Rahmawati Rahmawati ◽  
Fitri Ria Mustalifah ◽  
Aulia Rahma ◽  
Dewi Puspita Sari ◽  
...  

When hot season, South Kalimantan society which especially, in Muara Halyung village frequently go through clean water lacking. It becomes worst by water dirtied on wetland aquifer aftermath the seawater intrusion. Wetland water sources become saline and cannot be used for household needs. Organosilica membrane technology is one of methods can be used to remove salt contain in water. This study aims are to investigate the functionalization and organosilica membrane performance from TEOS-MTES which calcined on particularly temperature for wetland saline water desalination. Synthesis of organosilica sol was conducted by sol-gel method. Then the dried sol was calcined at 350°C and 600 °C, and characterized by FTIR (Fourier Transform InfraRed). Subsequently organosilica membrane was applicated for wetland saline water desalination via pervaporation. The result shows organosilica membrane performance was obtained the water flux 10,55 and 0,87 kg.m-2h-1 which calcined at 350 and 600 °C. The salt rejection in all membrane exhibits extremely high over 99%. It evinces the organosilica membrane from TEOS-MTES which calcined at 350 °C is great to applicated for wetland saline water desalination by both of water fluxes and salt rejection showed high.


2020 ◽  
Vol 981 ◽  
pp. 342-348 ◽  
Author(s):  
Muthia Elma ◽  
Gesit Satriaji Saputro

This work shows the performance of cobalt-silica membranes through water desalination via pervaporation process. The aim of this work is to find out the performance of the cobalt oxide as a templating agent in the silica cobalt membranes for water desalination via pervaporation process. It also aims to investigate the water flux and salt rejection of silica cobalt membranes using artificial saline water. The concentration of cobalt oxide as a template for fabricating cobalt-silica membranes were 5 – 35 wt%. The feed solution applied during pervaporation process were 0.3 – 5 wt% NaCl with operating temperatures of 25, 40 and 60 °C. The silica xerogels were characterized using Fourier Transform Infrared (FTIR), Scanning Electron Microscopy (SEM) and Brunauer-Emmett-Teller (BET). From the FTIR result, it is known that the higher the concentration of cobalt in the membrane, the more silanol and siloxane groups. Based on BET analysis, Si-Co 35 wt% membrane has largest pore volume (0.129387 cm3g-1). In addition, the highest value of water flux (7.2660 kg.m-2.h-1) and salt rejection (100%) is achieved by Si-Co 5% membrane in 0.3% NaCl feed at 60 °C. The value of water flux decreases and the value of salt rejection increases with increasing feed concentration.


Sign in / Sign up

Export Citation Format

Share Document