scholarly journals The Influence of Alloy Composition and Liquid Phase on Foaming of Al–Si–Mg Alloys

Metals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 189 ◽  
Author(s):  
Francisco García-Moreno ◽  
Laurenz Alexander Radtke ◽  
Tillmann Robert Neu ◽  
Paul Hans Kamm ◽  
Manuela Klaus ◽  
...  

The foaming behaviour of aluminium alloys processed by the powder compaction technique depends crucially on the exact alloy composition. The AlSi8Mg4 alloy has been in use for a decade now, and it has been claimed that this composition lies in an “island of good foaming”. We investigated the reasons for this by systematically studying alloys around this composition by varying the Mg and Si content by a few percent. We applied in situ X-ray 2D and 3D imaging experiments combined with a quantitative nucleation number and expansion analysis, X-ray tomography of solid foams to assess the pore structure and pore size distribution, and in situ diffraction experiments to quantify the melt fraction at any moment. We found a correlation between melt fraction and expansion height and verified that the “island of good foaming” actually exists, and foams outside a preferred range for the liquid fraction—just above TS and between 40–60%—show a poorer expansion performance than the reference alloy AlSi8Mg4. A very slight increase of Si and decrease of Mg content might further improve this foam.

2007 ◽  
Author(s):  
Laurence Lemelle ◽  
Alexandre Simionovici ◽  
Murielle Salomé ◽  
Pierre Bleuet ◽  
Jean Susini ◽  
...  
Keyword(s):  
X Ray ◽  

2014 ◽  
Vol 70 (a1) ◽  
pp. C500-C500
Author(s):  
Yusuke Yamada ◽  
Naohiro Matsugaki ◽  
Masahiko Hiraki ◽  
Ryuichi Kato ◽  
Toshiya Senda

Crystallization trial is one of the most important but time-consuming steps in macromolecular crystallography. Once a crystal appears in a certain crystallization condition, the crystal is typically harvested from the crystallization drop, soaked into a cryoprotection buffer, flash-cooled with a liquid nitrogen or cold gas flow and finally evaluated its diffraction quality by an X-ray beam. During these long process, crystal may be damaged and the result from the diffraction experiment does not necessarily reflect a nature of the crystal. On in-situ diffraction experiment, where a crystal in a crystallization drop is directly irradiated to an X-ray beam, a diffraction image from a crystal without any external factors such as harvesting and cryoprotection and, as a result, a nature of crystal can be evaluated quickly. In the Photon Factory, a new table-top diffractometer for in-situ diffraction experiments has been developed. It consists of XYZ translation stages with a plate handler, on-axis viewing system with a large numeric aperture and a plate rack where ten crystallization plates can be placed. These components sit on a common plate and it is placed on the existing diffractometer table in the beamline endstation. The CCD detector with a large active area and a pixel array detector with a small active area are used for acquiring diffraction images from crystals. Dedicated control software and user interface were also developed. Since 2014, user operation of the new diffractometer was started and in-situ diffraction experiments were mainly performed for evaluations of crystallization plates from a large crystallization screening project in our facility. BL-17A [1], one of micro-focus beamlines at the Photon Factory, is planned to be upgraded in March 2015. With this upgrade, a new diffractometer, which has a capability to handle a crystallization plate, will be installed so that diffraction data sets from crystals in crystallization drop can be collected.


2019 ◽  
Vol 35 (24) ◽  
pp. 21-29 ◽  
Author(s):  
Yuxin Wang ◽  
Yu-chen Karen Chen ◽  
Wilson K. Chiu

2014 ◽  
Vol 70 (a1) ◽  
pp. C1152-C1152
Author(s):  
Pierre Le Magueres ◽  
Angela Criswell ◽  
Joseph Ferrara

As crystallographers face increasing problems with crystallizing new proteins, in-situ screening in crystallization trays at room temperature is experiencing a renaissance. It saves a lot of time when screening large numbers of crystallization hits and it helps avoid crystal damage caused by human manipulation error (harsh manual handling, bad freezing) or changes in crystal properties (dehydration, wrong cryo-conditions). In certain cases, it is also possible to go beyond screening and collect enough data for structure solution, especially on an X-ray home source where a less intense beam helps minimize the devastations of radiation damage occurring at room temperature. The Rigaku PlateMate has proved itself as an efficient and easy-to-use in-situ screening tool on the field for the past two years. It is as easily mounted on a goniometer as a regular goniometer head and thanks to a plate adapter with SBS footprints, it accommodates most 96-wells plate types, from sitting and hanging drop to LCP plates. In addition, thanks to its narrow dimensions and aided by software to prevent collisions with the detector and the crystal viewing camera, the PlateMate can be used to easily collect data from crystals in situ. In this work, we present structure solution results obtained from data collected with the PlateMate on crystals from various proteins (native crystals or containing gold or iodine) and using one or multiple crystals to make up a complete data set.


2019 ◽  
Vol 5 (8) ◽  
pp. eaaw5019 ◽  
Author(s):  
Rafaella Georgiou ◽  
Pierre Gueriau ◽  
Christoph J. Sahle ◽  
Sylvain Bernard ◽  
Alessandro Mirone ◽  
...  

The in situ two-dimensional (2D) and 3D imaging of the chemical speciation of organic fossils is an unsolved problem in paleontology and cultural heritage. Here, we use x-ray Raman scattering (XRS)–based imaging at the carbon K-edge to form 2D and 3D images of the carbon chemistry in two exceptionally preserved specimens, a fossil plant dating back from the Carboniferous and an ancient insect entrapped in 53-million-year-old amber. The 2D XRS imaging of the plant fossil reveals a homogeneous chemical composition with micrometric “pockets” of preservation, likely inherited from its geological history. The 3D XRS imaging of the insect cuticle displays an exceptionally well preserved remaining chemical signature typical of polysaccharides such as chitin around a largely hollowed-out inclusion. Our results open up new perspectives for in situ chemical speciation imaging of fossilized organic materials, with the potential to enhance our understanding of organic specimens and their paleobiology.


2016 ◽  
Vol 72 (a1) ◽  
pp. s25-s25
Author(s):  
Gilles Labesse ◽  
Muriel Gelin ◽  
Vanessa Delfosse ◽  
Frédéric Allemand ◽  
François Hoh ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document