scholarly journals Dilution Ratio and the Resulting Composition Profile in Dissimilar Laser Powder Bed Fusion of AlSi10Mg and Al99.8

Metals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1222
Author(s):  
Constantin Böhm ◽  
Martin Werz ◽  
Stefan Weihe

A variant of a hybrid manufacturing process combines the benefits of laser powder bed fusion (LPBF) and conventional manufacturing. Hybrid manufacturing can result in dissimilar material combinations which are prone to process errors. This study is motivated by the future application of a hybrid manufacturing variant and focusses on dissimilar aluminium alloys were hot cracks are the dominant process errors. A theoretical model was derived for the composition profile based on the dilution ratio known from fusion welding. The theory was validated with penetration depth measurements and energy-dispersive X-ray spectroscopy line scans on samples manufactured by LPBF (powder AlSi10Mg, building platform Al99.8 and line energies Pv−1 = 0.26–0.42 J·mm−1). A material combination with a low hot crack susceptibility was chosen to establish the theory. The results suggest that the dilution ratio is dependent on the penetration depth and the layer thickness. The used line energies result in a dilution ratio of 67–86% which results in 2–6 re-melted and mixed layers per added layer. A specific process design metric, the mixture height, is proposed to estimate the spatial effect of the dilution. The results can be used to adjust process parameters to lessen the effect of process errors in dissimilar hybrid manufacturing and increase mechanical performance.

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 572
Author(s):  
Constantin Böhm ◽  
Martin Werz ◽  
Stefan Weihe

The range of available aluminum alloy powders for laser powder bed fusion (LPBF) is restricted to mainly Al–Si based alloys. Currently aluminum alloy powders, designed for lightweight application, based on Al–Mg (5000 series), Al–Si–Mg (6000 series), or Al–Zn–Mg (7000 series), cannot be processed by LPBF without solidification cracks. This has an impact on the potential of LPBF for lightweight applications. In fusion welding, solidification cracks are eliminated by using filler materials. This study aims to transfer the known procedure to LPBF, by supplementing EN AW-5083 (AlMg4.5Mn0.7) with AlSi10Mg. EN AW-5083 and two modifications (+7 wt.% and +15 wt.% AlSi10Mg) were produced by LPBF and analyzed. It was found that, in EN AW-5083, the solidification cracks have a length ≥200 µm parallel to the building direction. Furthermore, the solidification cracks can already be eliminated by supplementing 7 wt.% AlSi10Mg. The microstructure analysis revealed that, by supplementing AlSi10Mg, the melt pool boundaries become visible, and the grain refines by 40% relative to the base alloy. Therefore, adding a low melting point phase and grain refinement are the mechanisms that eliminate solidification cracking. This study illustrates a practical approach to eliminate solidification cracks in LPBF.


Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 538 ◽  
Author(s):  
Fabrizia Caiazzo ◽  
Vittorio Alfieri ◽  
Giuseppe Casalino

Laser powder bed fusion (LPBF) can fabricate products with tailored mechanical and surface properties. In fact, surface texture, roughness, pore size, the resulting fractional density, and microhardness highly depend on the processing conditions, which are very difficult to deal with. Therefore, this paper aims at investigating the relevance of the volumetric energy density (VED) that is a concise index of some governing factors with a potential operational use. This paper proves the fact that the observed experimental variation in the surface roughness, number and size of pores, the fractional density, and Vickers hardness can be explained in terms of VED that can help the investigator in dealing with several process parameters at once.


2020 ◽  
Vol 106 (7-8) ◽  
pp. 3367-3379 ◽  
Author(s):  
Shahriar Imani Shahabad ◽  
Zhidong Zhang ◽  
Ali Keshavarzkermani ◽  
Usman Ali ◽  
Yahya Mahmoodkhani ◽  
...  

Author(s):  
Katrin Jahns ◽  
Anke S. Ulrich ◽  
Clara Schlereth ◽  
Lukas Reiff ◽  
Ulrich Krupp ◽  
...  

AbstractDue to the inhibiting behavior of Cu, NiCu alloys represent an interesting candidate in carburizing atmospheres. However, manufacturing by conventional casting is limited. It is important to know whether the corrosion behavior of conventionally and additively manufactured parts differ. Samples of binary NiCu alloys and Monel Alloy 400 were generated by laser powder bed fusion (LPBF) and exposed to a carburizing atmosphere (20 vol% CO–20% H2–1% H2O–8% CO2–51% Ar) at 620 °C and 18 bar for 960 h. Powders and printed samples were investigated using several analytic techniques such as EPMA, SEM, and roughness measurement. Grinding of the material after building (P1200 grit surface finish) generally reduced the metal dusting attack. Comparing the different compositions, a much lower attack was found in the case of the binary model alloys, whereas the technical Monel Alloy 400 showed a four orders of magnitude higher mass loss during exposure despite its Cu content of more than 30 wt%.


Sign in / Sign up

Export Citation Format

Share Document