scholarly journals Histomorphometric Analysis of Osseointegrated Grade V Titanium Mini Transitional Implants in Edentulous Mandible by Backscattered Scanning Electron Microscopy (BS-SEM)

Metals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 2
Author(s):  
Víctor Beltrán ◽  
Benjamín Weber ◽  
Ricardo Lillo ◽  
María-Cristina Manzanares ◽  
Cristina Sanzana ◽  
...  

The purpose of this study is to assess the use of grade V titanium mini transitional implants (MTIs) immediately loaded by a temporary overdenture. For this, a histomorphometric analysis of the bone area fraction occupancy (BAFO) was performed by backscattered scanning electron microscopy (BS-SEM). Four female patients were submitted to surgery in which two MTIs were installed and immediately loaded with a temporary acrylic prosthesis. During the same surgery, two regular diameter implants were placed inside the bone and maintained without mechanical load. After 8 months, the MTIs were extracted using a trephine and processed for ultrastructural bone analysis by BS-SEM, and the regular-diameter implants were loaded with an overdenture device. A total of 243 BAFOs of MTIs were analyzed, of which 94 were mainly filled with cortical bone, while 149 were mainly filled with trabecular bone. Bone tissue analysis considering the total BAFOs with calcified tissues showed 72.13% lamellar bone, 26.04% woven bone, and 1.82% chondroid bone without significant differences between the samples. This study revealed that grade V titanium used in immediately loaded MTI was successfully osseointegrated by a mature and vascularized bone tissue as assessed from the BAFO.

2016 ◽  
Vol 66 (2) ◽  
pp. 234-244
Author(s):  
Ljubiša Đorđević ◽  
Stevo Najman ◽  
Perica Vasiljević ◽  
Miroslav Miljković ◽  
Nenad Ignjatović ◽  
...  

Abstract Implantation of a biomaterial is one of the important trends in solving the problem of bone tissue loss. Calcium hydroxiapatite (HAp), as the most representative bone component is a serious candidate for such implantations. The synthetic polymer poly-L-lactide (PLLA) in HAp/PLLA is often used as a polymeric material, with a role in the substitution of bone tissue collagen fibers. Fibers of PLLA may strengthen HAp and its good bioresorption provides space for tissue remodeling. Differences in porosity, microstructure, compressive consistency as well as bioresorbility of HAp/ PLLA may be achieved by using PLLA with different molecular weights. In this study HAp/PLLA composites with PLLA of different molecular weights (50,000; 160,000 and 430,000) were implanted in mouse peritoneum in order to examine the influence of the molecular weight of PLLA on morphology changes. Microstructural changes of biomaterial (HAp/PLLA) surface were analyzed one week, three weeks and four months after their implantation using Scanning Electron Microscopy. The results showed a significant difference in tissue reactions on the applied biocomposites, depending on their molecular weight. The most intense proliferation of cells was induced by HAp/PLLA 50,000 compared to HAp/PLLA 430,000 and HAp/PLLA 160,000. In the vicinity of HAp/PLLA 430,000 abundant erythrocytes were observed. The differences in biological reactions on the examined biocomposites are significant for their practical applications. HAp/PLLA composite biomaterials of different types and resorption rates require specific designing and programming to become suitable for particular purposes in an organism.


1985 ◽  
Vol 22 (12) ◽  
pp. 1930-1944 ◽  
Author(s):  
Tylon O. Willingham ◽  
Bartholomew Nagy ◽  
Lois Anne Nagy ◽  
David H. Krinsley ◽  
David J. Mossman

The Elliot Lake – Blind River, Ontario, paleoplacer deposits in the basal Matineda Formation, lowermost member of the 2.25–2.45 Ga old Huronian Supergroup, contain organic matter chemically consistent with kerogen. This substance is also referred to as thucholite. Uranium ores and some gold occur here, and these minerals may be in close association with the kerogen. Two uraniferous and auriferous stratiform kerogens, obtained from the Denison Mines Limited's Denison mine and Rio Algom Limited's Stanleigh mine, have been analyzed by combined high-vacuum pyrolysis – gas chromatography – mass spectrometry and by neutron activation. The reflectances of these samples have also been determined. Related samples containing dispersed kerogen have been examined by backscattered scanning electron microscopy. The polymer-like matrix of the two stratiform kerogens consists of aromatic, alkyl aromatic hydrocarbon, and sulphur moieties and contains 20 and 32% uranium with gold abundances in the parts per billion range. The reflectances of the two stratiform kerogens are generally higher than those of the dispersed kerogens; the atomic H/C ratios of the former are −0.6 and −0.4. Backscattered scanning electron microscopy and petrographic observations reveal a complex diagenetic history. Stratigraphic position and supportive analytical data suggest that the stratiform kerogens were probably derived from ancient mats of cyanobacteria, subjected to various radiation-induced reactions, and, at least in part, were affected in a manner similar to the surrounding rocks. The latter experienced physical and chemical diagenetic reactions, which often caused repeated mineral fracturing and led to the local development of authigenic carbonates and feldspar. Some of the chemical nature and history of the stratiform kerogens resemble those of the Witwatersrand carbon seam kerogens.


2011 ◽  
Vol 194-196 ◽  
pp. 1012-1016
Author(s):  
Xin Yu Zhang ◽  
Emmanuel Gallucci ◽  
Karen Scrivener

Alkali aggregate reaction (AAR) is known leading to great damage in concrete, both in compressive strength and in durability. In this study, a backscattered scanning electron microscopy with energy dispersive spectroscopy is adopted to diagnose AAR reaction. The results show that the type of AAR reaction and reaction products can be easily identified and the method is precise and fast.


Sign in / Sign up

Export Citation Format

Share Document