scholarly journals Optimization of Direct Laser Deposition of a Martensitic Steel Powder (Metco 42C) on 42CrMo4 Steel

Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 672
Author(s):  
André A. Ferreira ◽  
Roya Darabi ◽  
João P. Sousa ◽  
João M. Cruz ◽  
Ana R. Reis ◽  
...  

In this study, the deposition of martensitic stainless-steel (Metco 42C) powder on 42CrMo4 structural steel by direct laser deposition (DLD) was investigated. Clads were produced by varying the laser power, scanning speed, feed rate, and preheating. The effect of these processing variables on the microstructure and microhardness of the clads was analyzed, as well as their soundness, yield (measured by dilution), and geometric characteristics (height, width, and depth). The complex interaction of the evaluated processing variables forced the application of complex parameters to systematize their effect on the clads. A genetic optimization algorithm was performed to determine the processing conditions warranting high-quality clads, that is, sound clads, metallurgically bonded to the substrate with required deposition yield.

2019 ◽  
Vol 60 (1) ◽  
pp. 87-94
Author(s):  
I. S. Loginova ◽  
D. P. Bykovskiy ◽  
A. N. Solonin ◽  
A. S. Prosviryakov ◽  
V. V. Cheverikin ◽  
...  

2021 ◽  
Vol 1016 ◽  
pp. 725-731
Author(s):  
Olga Gennadyevna Klimova-Korsmik ◽  
R.V. Mendagaliyev ◽  
I.A. Tsibulskiy ◽  
O.G. Zotov ◽  
R.S. Korsmik ◽  
...  

At present, to increase competitiveness of shipyards for manufacturing of shipbuilding parts new high technologies are used. Additive production methods, including direct laser deposition (DLD) technology, which meets all the requirements of competitiveness, are increasingly being applied. Heavy-duty large-size parts such as propellers, blades, hubs and other critical parts used in shipbuilding have become possible to produce with DLD. In the process of DLD it is possible to produce parts, including shipbuilding steels used in the Arctic conditions, with the required mechanical characteristics not inferior to similar brands of materials obtained by casting or plastic deformation methods. The work is devoted to research of thermal process influence on structure and mechanical properties formation of deposited samples from steel powder 06Cr15Ni4CuMo. Features of formation of microstructure components by means of optical microscopy, X-ray structure analysis (XRD) are investigated, and also CCT diagram is constructed. Tensile and impact toughness tests have been conducted. As a result, it was found that the material obtained by the DLD method in its initial state significantly exceeds the strength characteristics of heat-treated castings of similar chemical composition, but is inferior to it in terms of plasticity and viscosity. The increase of viscosity and plasticity up to the level of cast material in the grown samples is achieved during the subsequent heat treatment, which leads to the formation of the structure of tempered martensite and reduction of its content in the two-stage tempering in the metal structure. The strength of the material is also reduced to cast metal after heat treatment.


Materials ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 2738 ◽  
Author(s):  
Ruslan Mendagaliev ◽  
Olga Klimova-Korsmik ◽  
Vladimir Promakhov ◽  
Nikita Schulz ◽  
Alexander Zhukov ◽  
...  

The urgency of heat treatment of samples of maraging steel obtained by direct laser deposition from steel powder 06Cr15Ni4CuMo is considered. The structural features and properties of 06Cr15Ni4CuMo steel samples after direct laser deposition and heat treatment are studied. The work is devoted to research into the influence of thermal processing on the formation of structure and the mechanical properties of deposit samples. Features of formation of microstructural components by means of optical microscopy are investigated. Tests for tension and impact toughness are conducted. As a result, it was established that the material obtained by the direct laser deposition method in its initial state significantly exceeds the strength characteristics of heat treatment castings of similar chemical composition, but is inferior to it in terms of impact toughness and relative elongation. The increase in relative elongation and impact toughness up to the level of cast material in the deposit samples is achieved at the subsequent heat treatment, which leads to the formation of the structure of tempered martensite and reduction in its content at two-stage tempering in the structure of the metal. The strength of the material is also reduced to the level of cast metal.


Author(s):  
Kamran Nazir ◽  
Chang Hyun Sohn ◽  
Fahad Hassan ◽  
Muhammad Awais ◽  
Muhammad Ali ◽  
...  

In direct laser deposition (DLD), metallic powder is injected into the melt pool in order to join different metals to develop fully dense and near net shape part. The cost of powder wasted in commercial DLD machines has been a major concern to the industries. More than 60% of the powder is wasted and is being disposed off which make the system economically and environmentally expensive. Recycling of powder is not feasible in many sectors, because of the fear of drop in the quality of the product. The objective of this study is to enhance the deposition efficiency of the DLD process, so that to minimize the amount of powder wasted. In present study, flow of powder is achieved by vibration of the powder delivery nozzle at sonic frequencies. Experimental studies are performed to analyze the deposition of powder by varying laser intensities, powder flow rate and laser scanning speed. The mass flow during certain time is weighed and the actual clad weight that is formed during the same period is weighted. The difference of the two is used to calculate the powder efficiency. Different set of experiments are performed. Powder mass flow rates are increased subsequently and Taguchi matrix are prepared for each set of experiment. Mass flow rate in initial experiments is from 0.044 grams/sec to 0.244 g/s and increases up to 0.86 g/s in the final set of experiments. Laser power during these experiments varies between 1KW to 2 KW, while laser scanning speeds varies from 100 mm/min to 350 mm/min. Maximum deposition efficiency is achieved in initial set of experiments and is up to 70%, which is significant improvement in the form of deposition efficiencies available in literature.


2019 ◽  
Vol 62 (4) ◽  
pp. 218-228 ◽  
Author(s):  
Xueting Chen ◽  
Suiyuan Chen ◽  
Jing Liang ◽  
Tong Cui ◽  
Changsheng Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document