scholarly journals Wear Behaviors of Stainless Steel and Lubrication Effect on Transitions in Lubrication Regimes in Sliding Contact

Metals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1854
Author(s):  
Yoon-Seok Lee ◽  
Shunnosuke Yamagishi ◽  
Masataka Tsuro ◽  
Changwook Ji ◽  
Seungchan Cho ◽  
...  

The wear behavior of AISI304 stainless steel was investigated under dry, water-, and oil-lubricated conditions. A block-on-disk wear test was conducted in this work, since the test conditions could be controlled easily. For oil-lubricated contact, a significant amount of thin and elongated cutting chip-like debris was observed. This is attributed to the high lubricating effect of oil. Strain-induced martensitic (SIM) transformation was observed for all AISI304 blocks after the wear test, while AISI304 consisted of a single γ-austenite phase prior to the wear test. The Stribeck curve and the corresponding lubrication regimes were also considered to explain the wear behaviors and lubrication effect of AISI304. In comparison to the dry or water-lubricated conditions, which fall in the boundary lubrication regime at a low rotation speed, it is considered that the high viscosity of the oil-based lubricant causes the lubrication condition to enter the mixed lubrication regime early at a lower speed, thus reducing the specific wear rate over the 100–300 rpm range.

2016 ◽  
Vol 68 (4) ◽  
pp. 458-465 ◽  
Author(s):  
Lijesh K.P. ◽  
Muzakkir S.M. ◽  
Harish Hirani ◽  
Gananath Doulat Thakre

Purpose The journal bearings subjected to heavy load and slow speed operate in mixed lubrication regime causing contact between the interacting surfaces and resulting in wear. Complexity of wear behavior and lack of unifying theory/model make wear-control very challenging. Design/methodology/approach In the present research work, theoretical and experimental investigations have been conducted to explore the effect of grooving arrangements on the wear behavior of journal bearing operating in mixed lubrication regime. The theoretical model of Hirani (2005) that uses mass conserving cavitation algorithm has been used to determine the bearing eccentricity for different groove arrangements (with varying groove location and extent) for identifying a groove arrangement that minimizes the wear. The wear tests on the grooved bearings were conducted after suitable running-in of the new bearings on a fully automated journal bearing test set-up. A load and speed combination required to operate the bearing in mixed lubrication was used. The performance of different arrangement of bearing was evaluated by measuring their weight loss after the test. Findings Wear was significantly reduced with the use of proper groove arrangement for a bearing operating in mixed lubrication regime. Originality/value The improvement in bearing performance by providing grooves has been the subject matter of several studies in the past, but these studies were confined to the hydrodynamic operative regime of the bearing. In the present work, seven different combinations of axial and radial groove arrangement were tried, which has not been reported in any other work.


Author(s):  
Mohd Fadzli Bin Abdollah ◽  
Hilmi Amiruddin ◽  
Muhammad Alif Azmi ◽  
Noor Ayuma Mat Tahir

This study intends to explore the lubrication mechanism of hexagonal boron nitride nano-additive. Synergistic analysis comprising worn surface observation, surface wettability testing, and the Stribeck curve principle is used to test this water-based lubricant on steel–steel contact. Distilled water and 0.1–5.0 vol.% hexagonal boron nitride nano-additive is used to prepare a mixture using sonification technique. A viscometer is employed to determine the viscosity of the nanolubricant. A four-ball tribometer is employed to determine the tribological characteristics and lubrication performance. Hamrock and Dowson equations are used to determine the minimum film thickness needed for lubrication. Surface morphology characteristics are inspected using energy-dispersive X-ray spectroscopy, scanning electron microscopy, surface tension meter, and profilometer. The efficacy of the lubricant as friction and wear-reduction additive is determined to have a mixed lubrication regime with the optimum concentration of 1.0 vol.% hexagonal boron nitride. Protecting film, mending effect, rolling effect, and polishing effect have been recommended as the lubrication mechanisms. Increasing the addition of hexagonal boron nitride additives may lead to a change in the lubrication regime from mixed to hydrodynamic, where agglomeration is observed in the nanoparticles, and an increase in friction is observed.


2020 ◽  
Vol 184 ◽  
pp. 01018
Author(s):  
A Rohit Sai Krishna ◽  
B Vamshi Krishna ◽  
D Harshith ◽  
T Sashank ◽  
Ram Subbiah

This project investigates on salt bath nitriding process in order to improve the wear behavior of the material. This process increases the hardness of the material. The specimens were nitrided at 580°c on three different timing hours such as 60 minutes, 90 minutes & 120 minutes. A pin on disc machine is used to conduct wear test, so that wear loss can be determined. The specimens are to be magnified by metallographic test like scanning electron microscope. The untreated specimen is used to compare with the nitrided specimen. The best specimen is chosen which determines the life of material & improves the better wear resistance. The hardness of untreated material and nitrided material are compared. The material AISI stainless steel has many unique properties but it lacks wear resistance and hardness because of which it has limited applications. By conducting heat treatment operation, the hardness of the material does not improve, but by conducting case hardening process the hardness of the outer case will be high compared to base metal. If the hardness and wear resistance of the material improves the material can be used in wide range of applications.


1997 ◽  
Vol 119 (4) ◽  
pp. 808-816 ◽  
Author(s):  
Naeim A. Henein ◽  
Shengqiang Huang ◽  
Walter Bryzik

A new approach is developed to determine piston-ring assembly lubrication regimes from the instantaneous frictional torque measured for the whole engine. This is based on the variation of the friction coefficient with the duty parameter in the Stribeck diagram over the mixed and hydrodynamic lubrication regimes. The derived equation determines the lubrication regimes from the slope of the line in the Stribeck diagram. A single cylinder spark ignition engine was instrumented to determine the total instantaneous frictional torque of the engine. Experiments were conducted under different loads at a constant speed. Results show that the regime is mixed lubrication near the top dead center (TDC) and shifts to the hydrodynamic lubrication regime as the piston moves away from TDC. The extent of the mixed lubrication regime depends on engine load and speed.


2014 ◽  
Vol 966-967 ◽  
pp. 120-125 ◽  
Author(s):  
Cédric Hubert ◽  
Krzysztof J. Kubiak ◽  
Maxence Bigerelle ◽  
Laurent Dubar

This paper proposes a new method of 3D roughness peaks curvature radius calculation and its application to tribological contact analysis as a characteristic signature of tribological contact. This method is introduced through the classical approach of calculation of radius of asperity in 2D. Actually, the proposed approach provides a generalization of Nowicki's method [], depending on horizontal lines intercepting the studied profile. Here, the basic idea consists in intercepting the rough surface by a horizontal plane and to calculate the cross section area without including “islands into islands”, i.e. the small peaks enclosed in bigger ones. Then, taking into account the maximal value of the height amplitude of the roughness included into this area, an appropriate algorithm is proposed, without requiring the classical hypothesis of derivability, which may be unstable when applied to engineering surfaces. This methodology is validated on simulated surfaces, and applied to engineering surfaces created experimentally, with a laboratory aluminium strip drawing process. The regions of the textured and lubricated specimens surface are analysed, and the results gives interesting prospects to qualitatively identify the local lubrication regimes: regions with high curvature radii correspond to severe contact (boundary/mixed lubrication regime) while regions with low curvature radii correspond to hydrodynamic lubrication regime.


2016 ◽  
Vol 18 (8) ◽  
pp. 785-796 ◽  
Author(s):  
Chunxing Gu ◽  
Xianghui Meng ◽  
Youbai Xie ◽  
Di Zhang

This article employs a mixed lubrication model to investigate the performance of the textured surface. The Jakobsson–Floberg–Olsson model is used to obtain the hydrodynamic support of the textured conjunction, while the calculation of the asperity contact load is based on the load-sharing concept. Based on the simulated Stribeck curves of the smooth surface and the textured surface, comparisons are conducted to study the effect of texturing under different lubrication regimes. It appears that the transition of lubrication regimes is influenced by the texturing parameters and the convergence degrees of conjunction. The presence of textures delays the appearance of the mixed lubrication regime and the boundary lubrication regime.


2021 ◽  
Vol 309 ◽  
pp. 01182
Author(s):  
B Divyasri ◽  
Ch. Phani Rama Krishna ◽  
Pradeep Jayappa ◽  
G. Keerthi Reddy ◽  
V. Vinay Kumar ◽  
...  

In industry, mechanical components must operate under conditions conditions such as variable load, speed, temperature and various chemical environments. Materials are selected depending on their application. They are selected for commercial availability, cost and properties such as strength, hardness etc. Many engineering errors are due to fatigue, corrosion and poor wear resistance occurring on its surface. This causes cracks in the surface that shortens the service life of the material. Also, the surfaces of materials are exposed to strong thermal, chemical and shock loads. Chosen for this research work, AISI 301LN materials have low surface hardness and poor wear properties, which can limit their applications were components mate each other. AISI 301LN stainless steel was treated with plasma nitriding at a low temperature of about 650°C. It was observed that a mixture of ferrites and gradually nitrogenous matter accumulates in the following layers namely iron nitride. Further nitriding was carried out to 20 hrs, 40 hrs, 60 hrs and the specimen were named as PL1, PL2 and PL3 respectively. It was observed that Cr-N layer were formed on the outer surface. Wear tests were carried out on a tribological wear test machine to study the wear behavior. A comparison is made between treated and untreated specimens. The microstructures are investigated with scanning electron microscope.


Author(s):  
Y. Sawae ◽  
K. Nakashima ◽  
S. Doi ◽  
T. Murakami ◽  
J. Sugimura

Machine components in the fuel cell vehicle and related hydrogen infrastructures are operating within high pressure hydrogen gas. Especially, polymer seals used in gas compressors and regulator valves should be articulating against their metal counter face in pressurized hydrogen gas. However, the effect of high pressure hydrogen gas on tribological behavior of sliding surfaces has not been identified yet. In this study, effects of the pressurized hydrogen gas environment on wear behavior of polymeric sealing materials were examined by exposing polymer specimens and their sliding counterface to the high pressure hydrogen gas prior to the wear test. Unfilled polytetrafluoroethylene (PTFE) and 15% graphite filled PTFE were tested as representative polymer sealing materials and 316L austenitic stainless steel was used as a sliding counterface. Results of X-ray photoelectron spectrometer (XPS) analysis of the exposed stainless surface indicated that metal oxides in the surface passive layer of 316L stainless steel could be reduced to some extent by high pressure hydrogen. Increased metal contents of the stainless surface enhanced the development of polymer transfer film and consequently lower the specific wear rate of PTFE and PTFE composites.


2006 ◽  
Vol 129 (1) ◽  
pp. 84-90 ◽  
Author(s):  
Xiaobin Lu ◽  
M. M. Khonsari

A series of experimental results is presented to explore the frictional characteristics of a grease-lubricated journal bearing. Load, grease type, and bushing material are varied to examine their effects on the friction coefficient. The results attest to the existence of distinctive regimes in grease lubrication akin to the oil-lubricated Stribeck curve. A mixed elastohydrodynamic lubrication model for line contacts is employed to estimate the coefficient of friction in mixed lubrication regime. The simulation results capture the basic characteristics of mixed lubrication.


Author(s):  
Andriy Kovalchenko ◽  
Oyelayo Ajayi ◽  
Ali Erdemir ◽  
George Fenske ◽  
Izhak Etsion

The effects of laser surface texturing (LST), which involves the creation of an array of microdimples on the surface with laser, on friction and wear behavior of oil-lubricated steel surfaces were evaluated. Tests were conducted in unidirectional sliding in both the conformal and non-conformal contact configurations with a pin-on-disc test rig using fully formulated synthetic oil lubricant. In conformal contact, LST expanded the operating conditions for mixed and hydrodynamic lubrication regimes to higher loads and slower speeds i.e. the Stribeck curve was shifted to the left. LST was also observed to reduce the magnitude of friction coefficients in the boundary regime. For the non-conformal contact configuration, LST produced more wear on the rubbing counterface compared to untreated surfaces. This also accelerated the run-in process in the tests with LST treated surfaces.


Sign in / Sign up

Export Citation Format

Share Document