Influence of LPBF-Surface Characteristics on Fatigue Properties of Scalmalloy®

Metals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1961
Author(s):  
Jens Musekamp ◽  
Thorsten Reiber ◽  
Holger Claus Hoche ◽  
Matthias Oechsner ◽  
Matthias Weigold ◽  
...  

Laser powder bed fusion (LPBF) has indisputable advantages when designing new components with complex geometries due to toolless manufacturing and the ability to manufacture components with undercuts. However, fatigue properties rely heavily on the surface condition. In this work, in-process surface parameters (three differing contour parameter sets) and post-process surface treatments, namely turning and shot peening, are varied to investigate the influence of each treatment on the resulting fatigue properties of LPBF-manufactured specimens of the aluminium–magnesium–scandium alloy Scalmalloy®. Therefore, metallographic analysis and surface roughness measurements, as well as residual stress measurements, computer tomography measurements, SEM-analyses, tensile and fatigue tests, along with fracture surface analysis, were performed. Despite the fact that newly developed in-process contour parameters are able to reduce the surface roughness significantly, only a minor improvement in fatigue properties could be observed: Crack initiation is caused by sharp, microscopic notches at the surface in combination with high tensile residual stresses at the surface, which are present on all in-process contour parameter specimens. Specimens using contour parameters with high line energy show keyhole pores localized in the subsurface area, which have no effect on crack initiation. Contours with low line energy have a slightly positive effect on fatigue strength because less pores can be found at the surface and subsurface area, which even more greatly promotes an early crack initiation. The post-process parameter sets, turning and shot peening, both improve fatigue behaviour significantly: Turned specimens show lowest surface roughness, while, for shot peened specimens, the tensile residual stresses of the surface radially shifted from the surface towards the centre of the specimens, which counteracts the crack initiation at the surface.

Metals ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 843 ◽  
Author(s):  
André Reck ◽  
André Till Zeuner ◽  
Martina Zimmermann

The study presented investigates the fatigue strength of the (α+β) Ti-6Al-4V-ELI titanium alloy processed by laser cutting with and without mechanical post-processing. The surface quality and possible notch effects as a consequence of non-optimized intermediate cutting parameters are characterized and evaluated. The microstructural changes in the heat-affected zone (HAZ) are documented in detail and compared to samples with a mechanically post-processed (barrel grinding, mechanical polishing) surface condition. The obtained results show a significant increase (≈50%) in fatigue strength due to mechanical post-processing correlating with decreased surface roughness and minimized notch effects when compared to the surface quality of the non-optimized laser cutting. The martensitic α’-phase is detected in the HAZ with the formation of distinctive zones compared to the initial equiaxial α+β microstructure. The HAZ could be removed up to 50% by means of barrel grinding and up to 100% through mechanical polishing. A fracture analysis revealed that the fatigue cracks always initiate on the laser-cut edges in the as-cut surface condition, which could be assigned to an irregular macro and micro-notch relief. However, the typical characteristics of the non-optimized laser cutting process (melting drops and significant higher surface roughness) lead to early fatigue failure. The fatigue cracks solely started from the micro-notches of the surface relief and not from the dross. As a consequence, the fatigue properties are dominated by these notches, which lead to significant scatter, as well as decreased fatigue strength compared to the surface conditions with mechanical finishing and better surface quality. With optimized laser-cutting conditions, HAZ will be minimized, and surface roughness strongly decreased, which will lead to significantly improved fatigue strength.


Author(s):  
Martin Widera

Due to the core shroud cracks reported from numerous BWRs including the German KWU type BWR Wuergassen, a RPV internals management program for the Gundremmingen NPP (KRB-II) has been initiated in 1994. Major steps and the main results of this program are presented. As an interim result, surface condition of the weld regions and controlled post weld heat treatment (PWHT) in order to reduce the residual stresses seem to play an important role for resistance to crack initiation and growth. To support these assumptions, results of related R&D projects of the German utilities (VGB) are presented.


2020 ◽  
Vol 142 ◽  
pp. 106004 ◽  
Author(s):  
Vicente Martín ◽  
Jesús Vázquez ◽  
Carlos Navarro ◽  
Jaime Domínguez

2010 ◽  
Vol 89-91 ◽  
pp. 53-58
Author(s):  
Sebastjan Žagar ◽  
Janez Grum

In the paper two aluminium alloys, i.e. 6082 and 7075, which were cold hardened by shot peening under different conditions, are treated. Surface hardening was carried out with S170 steel shot of the same diameter, particle hardness being 56 HRC. Other conditions were the operating pressure, mass flow, which provide different Almen intensities. The hardened layer was described by surface integrity. Macroscopic and microscopic analyses consisted in analyses of hardened profiles of hardness, and residual stresses in the thin surface layer. Research results indicated that there were significant differences among the characteristics chosen to describe surface integrity and that they had an important influence on the final condition of the surface layer. With too severe settings of the peening parameters, the surface properties got worse because of damages, which resulted in crack initiation and growth of the existing cracks.


2005 ◽  
Vol 297-300 ◽  
pp. 1919-1924
Author(s):  
Kiyotaka Masaki ◽  
Yasuo Ochi ◽  
Takashi Matsumura

In order to investigate the effect of SP treatment on the high cycle fatigue properties such as fatigue strength, crack initiation and propagation behaviors, rotating bending fatigue tests on shot-peening (SP) treated AC4CH aluminum alloy were carried out. The fatigue properties of the SP-treated material were compared with fatigue properties of the non-peened material, the hot isostatic pressure (HIP) treated material and the semi-liquid (SL) die casting material. the main conclusions obtained were, (1) The fatigue properties of SP-treated material is most excellent in all materials. (2) The fatigue life property of AC4CH alloys is significantly affected by fatigue crack initiation behavior. The reason why the SP-treated material has longer fatigue life than those of other material is that it has no cast defects near the surface by the effect of SP treatment. (3) The reason of fatigue life improvement by SP treatment is decrease of fatigue crack propagation rate.


Metals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 270 ◽  
Author(s):  
Hitoshi Soyama

The most popular surface modification technology used to enhance the mechanical properties of metallic materials is shot peening. Shot peening improves fatigue life and strength by introducing local plastic deformation pits. However, the pits increase surface roughness, which is a disadvantage for fatigue properties. Recently, cavitation peening, in which cavitation bubble collapse impacts are used, has been developed as an advanced surface modification technology. The advantage of cavitation peening is the lesser increase in surface roughness compared with shot peening, as no solid collisions occur in cavitation peening. In conventional cavitation peening, cavitation is generated by injecting a high-speed water jet into water. However, cavitation peening is different from water jet peening, in which water column impacts are used. In the present review, to avoid confusing cavitation peening and water jet peening, fundamentals and mechanisms of cavitation peening are described in comparison to water jet peening, and the effects and applications of cavitation peening are reviewed compared with the other peening methods.


Sign in / Sign up

Export Citation Format

Share Document