scholarly journals Insight into the Influence of Punch Velocity and Thickness on Forming Limit Diagrams of AA 6061 Sheets—Numerical and Experimental Analyses

Metals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2010
Author(s):  
Sasan Sattarpanah Karganroudi ◽  
Shahab Shojaei ◽  
Ramin Hashemi ◽  
Davood Rahmatabadi ◽  
Sahar Jamalian ◽  
...  

In this article, the forming limit diagram (FLD) for aluminum 6061 sheets of thicknesses of 1 mm and 3 mm was determined numerically and experimentally, considering different punch velocities. The punch velocity was adjusted in the range of 20 mm/min to 200 mm/min during the Nakazima test. A finite element (FE) simulation was carried out by applying the Johnson–Cook material model into the ABAQUSTM FE software. In addition, a comparison between the simulation and the experimental results was made. It was observed that by increasing the punch velocity, the FLD also increased for both thicknesses, but the degree of the improvement was different. Based on these results, we found a good agreement between numerical and experimental analyses (about 10% error). Moreover, by increasing the punch velocity from 20 mm/min to 100 mm/min in 1 mm-thick specimens, the corresponding FLD increased by 3.8%, while for 3 mm-thick specimens, this increase was 5.2%; by increasing the punch velocity from 20 mm/min to 200 mm/min in the 3 mm-thick sheets, the corresponding FLD increased by 9.3%.

2011 ◽  
Vol 473 ◽  
pp. 631-636 ◽  
Author(s):  
Ivaylo N. Vladimirov ◽  
Yalin Kiliclar ◽  
Vivian Tini ◽  
Stefanie Reese

The paper discusses the application of a newly developed coupled material model of finite anisotropic multiplicative plasticity and continuum damage to the numerical prediction of the forming limit diagram at fracture (FLDF). The model incorporates Hill-type plastic anisotropy, nonlinear Armstrong-Frederick kinematic hardening and nonlinear isotropic hardening. The numerical examples investigate the simulation of forming limit diagrams at fracture by means of the so-called Nakajima stretching test. Comparisons with test data for aluminium sheets display a good agreement between the finite element results and the experimental data.


Author(s):  
Ramin Hashemi ◽  
Ehsan Karajibani

The aim of this research was to introduce a computational approach for prediction of the forming limit diagram of Al-Cu two-layer metallic sheets. The computational approach was based on the modified Marciniak and Kuczynski theory. In this study, the forming limit diagrams of aluminum–copper two-layer metallic sheets were obtained through the modified Marciniak and Kuczynski theory and experimental investigations. In the present modified Marciniak and Kuczynski theory, there existed four nonlinear equations which were solved simultaneously. The Quasi-Newton Method was applied for a solution to the system of equations. To verify the theoretical predictions, the experimental works were accomplished on the Al-Cu two-layer metallic sheets and a good agreement between the proposed method and experimental works was observed.


2005 ◽  
Vol 128 (4) ◽  
pp. 874-883 ◽  
Author(s):  
L. M. Smith ◽  
J. J. Caveney ◽  
T. Sun

A family of closed-form formulas for calculating minimum corner-fill radii in planar sections of tube hydroformed products is introduced. Corner forming limit diagrams relating the limiting major strain to the minimum corner-fill radius are introduced. The theory accounts for friction effects and accommodates regular shaped polygon die sections. This effort represents an exploration into a method for design and analysis of tube hydroforming processes without employing the finite element method and while using a closed form approach for capturing friction effects. Good agreement with experimental results is observed.


Author(s):  
Robert E. Dodde ◽  
Scott F. Miller ◽  
Albert J. Shih ◽  
James D. Geiger

Cautery is a process to coagulate tissues and seal blood vessels using the heat. In this study, finite element modeling (FEM) was performed to analyze temperature distribution in biological tissue subject to cautery electrosurgical technique. FEM can provide detailed insight into the heat transfer in biological tissue to reduce the collateral thermal damage and improve the safety of cautery surgical procedure. A coupled thermal-electric FEM module was applied with temperature-dependent electrical and thermal properties for the tissue. Tissue temperature was measured at different locations during the electrosurgical experiments and compared to FEM results with good agreement. The temperature-dependent electrical conductivity has demonstrated to be critical. In comparison, the temperature-dependent thermal conductivity does not impact heat transfer as much as the electrical conductivity. FEM results show that the thermal effects can be varied with the electrode geometry that focuses the current density at the midline of the instrument profile.


Author(s):  
Mostafa Habibi ◽  
Ramin Hashemi ◽  
Ahmad Ghazanfari ◽  
Reza Naghdabadi ◽  
Ahmad Assempour

Forming limit diagram is often used as a criterion to predict necking initiation in sheet metal forming processes. In this study, the forming limit diagram was obtained through the inclusion of the Marciniak–Kaczynski model in the Nakazima out-of-plane test finite element model and also a flat model. The effect of bending on the forming limit diagram was investigated numerically and experimentally. Data required for this simulation were determined through a simple tension test in three directions. After comparing the results of the flat and Nakazima finite element models with the experimental results, the forming limit diagram computed by the Nakazima finite element model was more convenient with less than 10% at the lower level of the experimental forming limit diagram.


2007 ◽  
Vol 344 ◽  
pp. 113-118 ◽  
Author(s):  
Massimo Tolazzi ◽  
Marion Merklein

This paper presents a method for the experimental determination of forming limit diagrams under non linear strain paths. The method consists in pre-forming the sheets under two different strain conditions: uniaxial and biaxial, and then stretching the samples, cut out of the preformed sheets, using a Nakajima testing setup. The optical deformation measurement system used for the process analysis (ARAMIS, Company GOM) allows to record and to analyze the strain distribution very precisely with respect to both time and space. As a reference also the FLDs of the investigated grades (the deep drawing steel DC04, the dual phase steel DP450 and the aluminum alloy AA5754) in as-received conditions were determined. The results show as expected an influence of the pre-forming conditions on the forming limit of the materials, with an increased formability in the case of biaxial stretching after uniaxial pre-forming and a reduced formability for uniaxial load after biaxial stretching if compared to the case of linear strain paths. These effects can be observed for all the investigated materials and can be also described in terms of a shifting of the FLD, which is related to the art and magnitude of the pre-deformation.


2013 ◽  
Vol 652-654 ◽  
pp. 1966-1970
Author(s):  
Zhi Ren Han ◽  
Ze Bing Yuan

This paper is focus on two-Pass Deep Drawing Forming of conical axisymmetric parts, study on the finite element simulation and test of multi-Pass deep drawing part. It carry on the finite element analysis and calculation using the ANSYS/LS-DYNA software platform, analyzing the simulation results such as stress , strain distribution and formability by post-processing LSPOST software. It was done multi-Pass deep drawing test using a set of combined type mould. Based on the multi-Pass forming test by using a set of combined type mould, comparison of simulation and test data can be obtained through the forming limit diagram. The result of simulation and test is basically the same and both reflect the formability.


2011 ◽  
Vol 55-57 ◽  
pp. 2104-2108
Author(s):  
Xiao Chun Ma ◽  
Wei Bing Shen ◽  
Yi Qiang Zhuang

This paper is concerned with the quantitative effect of design parameters on the stamping process of automobile crossbeam. The considered parameters in this paper are the friction coefficient, the die fillet radius and the blank holding force, which greatly affect the metal flow during stamping. Based on the finite element numerical simulation, the stamping shaped process of the automobile crossbeam is numerical simulated with the explicit finite element method with various parameters by dint of Dynaform software. According to the simulation results, the forming limit diagram(FLD) and the wall thickness distribution of cloud on the stamping processes are technologically analyzed, the reasons and control methods of wrinkling are also pointed out, and then the optimal parameter combination of the automobile crossbeam is obtained by orthogonal experiments. It is noted that the parametric study of design parameters such as µ , BHF and RD are very important in the process design of the complicated member.


Sign in / Sign up

Export Citation Format

Share Document