scholarly journals PCBN Performance in High Speed Finishing Turning of Inconel 718

Metals ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 582 ◽  
Author(s):  
José Díaz-Álvarez ◽  
Víctor Criado ◽  
Henar Miguélez ◽  
José Cantero

Inconel 718 is a Ni superalloy widely used in high responsibility components requiring excellent mechanical properties at high temperature and elevated corrosion resistance. Inconel 718 is a difficult to cut material due to the elevated temperature generated during cutting, its low thermal conductivity, and the strong abrasive tool wear during cutting process. Finishing operations should ensure surface integrity of the component commonly requiring the use of hard metal tools with sharp tool edges and moderate cutting speeds. Polycrystalline cubic boron nitride (PCBN) tools recently developed an enhanced toughness suitable for these final operations. This paper focuses on the study of PCBN tools performance in finishing turning of Inconel 718. Several inserts representative of different manufacturers were tested and compared to a reference carbide tool. The evolution of tool wear, surface roughness, and cutting forces was analyzed and discussed. PCBN tools demonstrated their suitability for finishing operations, presenting reasonable removal rates and surface quality.

1999 ◽  
Author(s):  
Katsuhito Yoshida ◽  
Satoru Kukino ◽  
Takashi Harada ◽  
Tomohiro Fukaya ◽  
Junichi Shiraishi ◽  
...  

Abstract PCBN (Polycrystalline Cubic Boron Nitride) cutting tools have become very familiar in the industries for cutting hardened steel parts and the demand for PCBN tools is growing rapidly. One of the reasons for this is the trend of replacing grinding processes with cutting. Although the trend of processing is to use more cutting, there still remains grinding in many processing fields. High precision machining and high speed interrupted machining have been such fields. In this study it has been verified that a novel cutting method can be applied to high precision machining with the smoothness of Rz 0.8 μm and that a new PCBN has sufficient reliability against tool failure in high speed (< 250m/min) interrupted cutting. Thus cutting has become applicable to those machining and the trend of replacement of grinding with cutting will be enhanced. Those new technologies will be introduced in this report.


2014 ◽  
Vol 783-786 ◽  
pp. 2798-2803 ◽  
Author(s):  
Marion Allart ◽  
Alexandre Benoit ◽  
Pascal Paillard ◽  
Guillaume Rückert ◽  
Myriam Chargy

Friction Stir Welding (FSW) is one of the most recent welding processes, invented in 1991 by The Welding Institute. Recent developments, mainly using polycrystalline cubic boron nitride (PCBN) tools, broaden the range of use of FSW to harder materials, like steels. Our study focused on the assembly of high yield strength steels for naval applications by FSW, and its consequences on the metallurgical properties. The main objectivewas to analyze the metallurgical transformations occurring during welding. Welding tests were conducted on three steels: 80HLES, S690QL and DH36. For each welded sample, macrographs, micrographs and micro-hardness maps were performed to characterize the variation of microstructures through the weld.


Procedia CIRP ◽  
2018 ◽  
Vol 77 ◽  
pp. 602-605 ◽  
Author(s):  
Berend Denkena ◽  
Thilo Grove ◽  
Alexander Krödel ◽  
Lars Ellersiek

Author(s):  
Justin L. Milner ◽  
Jeffrey A. Beers ◽  
John T. Roth

Machining is a popular and versatile manufacturing process that is widely used in today’s industry when producing metallic parts; however, limited tool life can make this an expensive and time consuming fabrication technique. Consequently, methods that decrease the rate of tool wear and, thus, increase tool longevity are a vital component when improving the efficiency of machining processes. To this end, cryogenically treating cutting tools (especially high-speed steel tooling) is becoming more commonplace since research has shown that the treated tooling exhibits significantly higher wear resistance. At this point, however, the effect of cryogenic treatments on ceramic tooling has not been established. Considering this, the research herein presents a feasibility study on the effectiveness of using cryogenic treatments to enhance the wear resistance of WG-300 whisker-reinforced ceramic cutting inserts. To begin, the effect of the cryogenic treatment on the insert’s hardness is examined. Subsequently, tool wear tests are conducted at various cutting speeds. Through this study, it is shown that cryogenically treating the ceramic inserts decreases the rate of tool wear at each of the cutting speeds that were tested. However, the degree of wear resistance introduced by cryogenically treating the inserts proved to be highly dependent on the cutting speed, with slower speeds exhibiting greater improvements. Thus, based on this initial study, the cryogenic treatment of ceramic tooling appears to produce beneficial results, potentially increasing the overall efficiency of machining processes.


2011 ◽  
Vol 188 ◽  
pp. 578-583 ◽  
Author(s):  
Toshiyuki Obikawa ◽  
Masahiro Anzai ◽  
Tsuneo Egawa ◽  
Norihiko Narutaki ◽  
Kazuhiro Shintani ◽  
...  

This paper describes strong nonlinearity in log V-log L relationship, which is often found in machining of supperalloys, titanium alloys, hardened steels, cast irons, etc. The nonlinearity plays an important and favorable role in extension of life-span cutting distance at higher cutting speeds; that is, in a certain range of cutting speed, life-span cutting distance increases with cutting speed. Results of tool wear in a sliding test and cutting experiments, which showed the evidences of strong nonlinearity, were investigated and the mechanisms causing the nonlinearity were discussed.


2012 ◽  
Vol 488-489 ◽  
pp. 724-728 ◽  
Author(s):  
Tadahiro Wada

Using polycrystalline cubic boron nitride compact (cBN) tools, which have different cBN contents and cBN particle sizes, the influences of both the cBN content and the cBN particle size on tool wear in turning of hardened steel at various cutting speeds was experimentally investigated. Three types of cBN tools (a cBN content of 45-55% and 75%, and a cBN particle size of 0.5 μm and 5 μm, respectively) were tested. Furthermore, three kinds of chamfered and honed cutting edges were also used. The main results obtained are as follows: (1) In the case of the cBN tools with the same cBN particle size of 5.0 μm, the tool life of the cBN tool with a cBN content of 75% was longer than that of the cBN tool with a cBN content of 45% at low cutting speed. However, at high cutting speed, the tool life of the cBN tool with a cBN content of 75% was shorter. (2) The tool life of the cBN tool with both a cBN content of 55% and a cBN particle size of 0.5 μm was the longest. (3) The tool wear of cBN tools decreased with a decrease in chamfer width.


Sign in / Sign up

Export Citation Format

Share Document