scholarly journals New Insight on the Hydrogen Absorption Evolution of the Mg–Fe–H System under Equilibrium Conditions

Metals ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 967 ◽  
Author(s):  
Julián Puszkiel ◽  
M. Castro Riglos ◽  
José Ramallo-López ◽  
Martin Mizrahi ◽  
Thomas Gemming ◽  
...  

Mg2FeH6 is regarded as potential hydrogen and thermochemical storage medium due to its high volumetric hydrogen (150 kg/m3) and energy (0.49 kWh/L) densities. In this work, the mechanism of formation of Mg2FeH6 under equilibrium conditions is thoroughly investigated applying volumetric measurements, X-ray diffraction (XRD), X-ray absorption near edge structure (XANES), and the combination of scanning transmission electron microscopy (STEM) with energy-dispersive X-ray spectroscopy (EDS) and high-resolution transmission electron microscopy (HR-TEM). Starting from a 2Mg:Fe stoichiometric powder ratio, thorough characterizations of samples taken at different states upon hydrogenation under equilibrium conditions confirm that the formation mechanism of Mg2FeH6 occurs from elemental Mg and Fe by columnar nucleation of the complex hydride at boundaries of the Fe seeds. The formation of MgH2 is enhanced by the presence of Fe. However, MgH2 does not take part as intermediate for the formation of Mg2FeH6 and acts as solid-solid diffusion barrier which hinders the complete formation of Mg2FeH6. This work provides novel insight about the formation mechanism of Mg2FeH6.

Author(s):  
Norihiko L. Okamoto ◽  
Katsushi Tanaka ◽  
Akira Yasuhara ◽  
Haruyuki Inui

The structure of the δ1pphase in the iron−zinc system has been refined by single-crystal synchrotron X-ray diffraction combined with scanning transmission electron microscopy. The large hexagonal unit cell of the δ1pphase with the space group ofP63/mmccomprises more or less regular (normal) Zn12icosahedra, disordered Zn12icosahedra, Zn16icosioctahedra and dangling Zn atoms that do not constitute any polyhedra. The unit cell contains 52 Fe and 504 Zn atoms so that the compound is expressed with the chemical formula of Fe13Zn126. All Fe atoms exclusively occupy the centre of normal and disordered icosahedra. Iron-centred normal icosahedra are linked to one another by face- and vertex-sharing forming two types of basal slabs, which are bridged with each other by face-sharing with icosioctahedra, whereas disordered icosahedra with positional disorder at their vertex sites are isolated from other polyhedra. The bonding features in the δ1pphase are discussed in comparison with those in the Γ and ζ phases in the iron−zinc system.


2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
D. K. Calvo Ramos ◽  
M. Vega González ◽  
R. A. Esparza Muñóz ◽  
J. Santos Cruz ◽  
F. J. De Moure-Flores ◽  
...  

Titanium dioxide (TD) and graphene oxide (GO) were synthesized by sol-gel and improved Hummers method, respectively. This study shows the results of the incorporation through four different conditions (sol-gel, sol-gel and ultrasonic, annealed, and UV radiation, C1 to C4, respectively). It was observed that a homogeneous incorporation of TD on sheets of GO was obtained satisfactorily. The composites of TiO2/GO were characterized using different techniques such as X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), scanning transmission electron microscopy (STEM), energy dispersive X-ray spectroscopy (EDS), Raman spectroscopy, and infrared spectroscopy (IR). The photocatalytic activity of the composites was determined from the degradation of the dye azo tartrazine using UV and solar radiation. The best incorporation of TD nanoparticles on GO was obtained with condition C3 (thermal incorporation method) at a temperature of 65°C. This shows a uniformity in the size and shape of the TD as well as an excellent adherence to the sheet of GO. This addition is accomplished by ionic bonding in the presence of electrostatic Coulomb forces. The C3 composite degraded the tartrazine dye using UV radiation and sunlight. With the latter, the degradation time was three times faster than using UV light.


2010 ◽  
Vol 1257 ◽  
Author(s):  
Zulima Martin ◽  
M. Angeles Gomez ◽  
Ignacio Jimenez

AbstractHere we present a study on the polypropylene/montmorillonite interaction based on x-ray diffraction, transmission electron microscopy (TEM) and scanning transmission x-ray microscopy (STXM) measurements, which provides a complete picture of the intercalation and exfoliation processes taking place.


2011 ◽  
Vol 1295 ◽  
Author(s):  
Shunta Harada ◽  
Katsushi Tanaka ◽  
Kyosuke Kishida ◽  
Norihiko L Okamoto ◽  
Noriaki Endo ◽  
...  

ABSTRACTThe crystal structure of thermoelectric rhenium silicide with an ordered arrangement of vacancies is investigated by utilizing spherical aberration (Cs) corrected scanning transmission electron microscopy (STEM) combined with synchrotron X-ray diffraction and conventional transmission electron microscopy. By STEM Cs corrected imaging, we can clearly observe Si vacancies in rhenium silicide, which is impossible without Cs correction. In addition, significantly reduced contrast levels are noted in STEM images for particular Si sites near vacancies. From the STEM image simulation, the reduced contrast levels are concluded to be due to anomalously large local thermal vibration of these Si atoms. The crystal structure of rhenium silicide can be successfully refined by the synchrotron X-ray diffraction starting with the deduced structure model from the STEM images and the occurrence of large local thermal vibration can be qualitatively confirmed. Furthermore, we confirm the validity of the refined crystal structure of rhenium silicide by comparing experimental images with simulated image generating with the refined crystal structure parameters.


1995 ◽  
Vol 384 ◽  
Author(s):  
I. Hussain ◽  
I. Gameson ◽  
P.A. Anderson ◽  
P. P. Edwards

ABSTRACTThis investigation has looked at the preparation of nanoscale cobalt particles by a simple solid state reaction involving cobalt (II) nitrate and zeolite Na-X under vacuum conditions followed by reduction in an hydrogen atmosphere. Samples were characterised by powder x-ray diffraction and scanning/transmission electron microscopy (TEM). Magnetic measurements were performed on the samples below 300 K using a SQUID magnetometer.


Author(s):  
R. Gronsky

The phenomenon of clustering in Al-Ag alloys has been extensively studied since the early work of Guinierl, wherein the pre-precipitation state was characterized as an assembly of spherical, ordered, silver-rich G.P. zones. Subsequent x-ray and TEM investigations yielded results in general agreement with this model. However, serious discrepancies were later revealed by the detailed x-ray diffraction - based computer simulations of Gragg and Cohen, i.e., the silver-rich clusters were instead octahedral in shape and fully disordered, atleast below 170°C. The object of the present investigation is to examine directly the structural characteristics of G.P. zones in Al-Ag by high resolution transmission electron microscopy.


Author(s):  
Kenichi Takaya

Mast cell and basophil granules of the vertebrate contain heparin or related sulfated proteoglycans. Histamine is also present in mammalian mast cells and basophils. However, no histamine is detected in mast cell granules of the amphibian or fish, while it is shown in those of reptiles and birds A quantitative x-ray microanalysis of mast cell granules of fresh frozen dried ultrathin sections of the tongue of Wistar rats and tree frogs disclosed high concentrations of sulfur in rat mast cell granules and those of sulfur and magnesium in the tree frog granules. Their concentrations in tree frog mast cell granules were closely correlated (r=0.94).Fresh frozen dried ultrathin sections and fresh air-dried prints of the tree frog tongue and spleen and young red-eared turtle (ca. 6 g) spleen and heart blood were examined by a quantitative energy-dispersive x-ray microanalysis (X-650, Kevex-7000) for the element constituents of the granules of mast cells and basophils. The specimens were observed by transmission electron microscopy (TEM) (80-200 kV) and followed by scanning transmission electron microscopy (STEM) under an analytical electron microscope (X-650) at an acceleration voltage of 40 kV and a specimen current of 0.2 nA. A spot analysis was performed in a STEM mode for 100 s at a specimen current of 2 nA on the mast cell and basophil granules and other areas of the cells. Histamine was examined by the o-phthalaldehyde method.


Sign in / Sign up

Export Citation Format

Share Document