scholarly journals Effect of Preheating Temperature on the Microstructure and Tensile Properties of 6061 Aluminum Alloy Processed by Hot Rolling-Quenching

Metals ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 182 ◽  
Author(s):  
Qing-Long Zhao ◽  
Tong-Tong Shan ◽  
Run Geng ◽  
Yang-Yang Zhang ◽  
Hong-Yun He ◽  
...  

The present work investigates the microstructure and tensile properties of a hot rolled 6061 alloy quenched by cold rolls (RQ) at different preheating temperatures. The preheating temperature strongly affects microstructure evolution and mechanical properties. Low preheating temperature (490 °C) resulted in both low strength and low elongation. The RQ alloy preheated at 540 °C exhibited improved ductility compared to those subjected to T6 and T8 temper, and comparable strength to that after T8 temper. The dynamic recovery during hot rolling contributed to the improved tensile elongation and retained work hardening. High preheating temperature also led to pronounced ageing hardening during short-term ageing.

2017 ◽  
Vol 17 (01) ◽  
pp. 73-80 ◽  
Author(s):  
S.V. Danilov ◽  
◽  
P.L. Reznik ◽  
M.L. Lobanov ◽  
M.A. Golovnin ◽  
...  

Metals ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 40 ◽  
Author(s):  
Sergey Zherebtsov ◽  
Maxim Ozerov ◽  
Elizaveta Povolyaeva ◽  
Vitaly Sokolovsky ◽  
Nikita Stepanov ◽  
...  

A Ti-15Mo/TiB metal matrix composite was produced by the spark plasma sintering process at 1400 °C using a Ti-14.25 wt.% Mo-5 wt.% TiB2 powder mixture. The microstructure and mechanical properties of the composite were studied after non-isothermal rolling of specimens heated to 1000 °C to a thickness strain of ~0.7. Transmission and scanning electron microscopy, as well as X-ray analysis were used for microstructure examination; mechanical properties were evaluated using tensile testing and microhardness measurement. In the initial condition, the Ti-15Mo/TiB composite consisted of 8.5 vol.% of TiB needle-like particles heterogeneously distributed within the β matrix. A small volume of fractions of the α″ and ω phases was also found in the microstructure. Microstructure evolution of the composite during hot rolling was associated with dynamic recrystallization of the bcc titanium matrix and shortening of the TiB whiskers by a factor of ~2. The Ti-15Mo/TiB composite after hot rolling showed considerable improvement in ductility without substantial loss of strength and hardness. The hot rolled specimen was not fractured during the compression test even after 45% thickness reduction, while in the initial condition, the compression ductility was 22%. The yield strength for both conditions was quite similar (~1350 MPa). The hot rolled composite also showed some improvement in ductility to ~12% elongation at elevated temperature (500 °C) compared to the initial condition, the tensile elongation of which did not exceed 2%. The observed difference in the mechanical behavior was associated with the presence of the metastable α″ and isothermal ω phases in the initial condition and the more stable α phase in the hot rolled condition.


Alloy Digest ◽  
1988 ◽  
Vol 37 (11) ◽  

Abstract UNS A96061 is a wrought precipitation-hardenable aluminum alloy having excellent resistance to corrosion and good mechanical properties. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and shear strength as well as fatigue. It also includes information on low and high temperature performance, and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Al-292. Producer or source: Various aluminum companies.


Metals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 476
Author(s):  
Sayed Amer ◽  
Ruslan Barkov ◽  
Andrey Pozdniakov

Microstructure of Al-Cu-Yb and Al-Cu-Gd alloys at casting, hot-rolled -cold-rolled and annealed state were observed; the effect of annealing on the microstructure was studied, as were the mechanical properties and forming properties of the alloys, and the mechanism of action was explored. Analysis of the solidification process showed that the primary Al solidification is followed by the eutectic reaction. The second Al8Cu4Yb and Al8Cu4Gd phases play an important role as recrystallization inhibitor. The Al3Yb or (Al, Cu)17Yb2 phase inclusions are present in the Al-Cu-Yb alloy at the boundary between the eutectic and aluminum dendrites. The recrystallization starting temperature of the alloys is in the range of 250–350 °C after rolling with previous quenching at 590 and 605 °C for Al-Cu-Yb and Al-Cu-Gd, respectively. The hardness and tensile properties of Al-Cu-Yb and Al-Cu-Gd as-rolled alloys are reduced by increasing the annealing temperature and time. The as-rolled alloys have high mechanical properties: YS = 303 MPa, UTS = 327 MPa and El. = 3.2% for Al-Cu-Yb alloy, while YS = 290 MPa, UTS = 315 MPa and El. = 2.1% for Al-Cu-Gd alloy.


2021 ◽  
Vol 203 ◽  
pp. 109538
Author(s):  
Boan Xu ◽  
Ping Jiang ◽  
Shaoning Geng ◽  
Yilin Wang ◽  
Jintian Zhao ◽  
...  

2011 ◽  
Vol 528 (7-8) ◽  
pp. 3243-3248 ◽  
Author(s):  
S.C. Xu ◽  
L.D. Wang ◽  
P.T. Zhao ◽  
W.L. Li ◽  
Z.W. Xue ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 906
Author(s):  
Dong Han ◽  
Yongqing Zhao ◽  
Weidong Zeng

The present study focuses on the effect of 1% Zr addition on the microstructure, tensile properties and superplasticity of a forged SP700 alloy. The results demonstrated that Zr has a significant effect on inhibiting the microstructural segregation and increasing the volume fraction of β-phase in the forged SP700 alloy. After annealing at 820 °C for 1 h and aging at 500 °C for 6 h, the SP700 alloy with 1% Zr showed a completely globular and fine microstructure. The yield strength, ultimate tensile strength and tensile elongation of the alloy with optimized microstructure were 1185 MPa, 1296 MPa and 10%, respectively. The superplastic deformation was performed at 750 °C with an elongation of 1248%. The improvement of tensile properties and superplasticity of the forged SP700 alloy by Zr addition was mainly attributed to the uniform and fine globular microstructures.


Sign in / Sign up

Export Citation Format

Share Document