scholarly journals Effect of Ultra-Fast Heat Treatment on the Subsequent Formation of Mixed Martensitic/Bainitic Microstructure with Carbides in a CrMo Medium Carbon Steel

Metals ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 312 ◽  
Author(s):  
Spyros Papaefthymiou ◽  
Alexandros Banis ◽  
Marianthi Bouzouni ◽  
Roumen Petrov

The current work focuses on complex multiphase microstructures gained in CrMo medium carbon steel after ultra-fast heat treatment, consisting of heating with heating rate of 300 °C/s, 2 s soaking at peak temperature and subsequent quenching. In order to better understand the microstructure evolution and the phenomena that take place during rapid heating, an ultra-fast heated sample was analyzed and compared with a conventionally treated sample with a heating rate of 10 °C/s and 360 s soaking. The initial microstructure of both samples consisted of ferrite and spheroidized cementite. The conventional heat treatment results in a fully martensitic microstructure as expected. On the other hand, the ultra-fast heated sample shows significant heterogeneity in the final microstructure. This is a result of insufficient time for cementite dissolution, carbon diffusion and chemical composition homogenization at the austenitization temperature. Its final microstructure consists of undissolved spheroidized cementite, nano-carbides and martensite laths in a ferritic matrix. Based on EBSD and TEM analysis, traces of bainitic ferrite are indicated. The grains and laths sizes observed offer proof that a diffusionless, massive transformation takes place for the austenite formation and growth instead of a diffusion-controlled transformation that occurs on a conventional heat treatment.

2018 ◽  
Vol 18 (1) ◽  
pp. 125-135
Author(s):  
Sattar H A Alfatlawi

One of ways to improve properties of materials without changing the product shape toobtain the desired engineering applications is heating and cooling under effect of controlledsequence of heat treatment. The main aim of this study was to investigate the effect ofheating and cooling on the surface roughness, microstructure and some selected propertiessuch as the hardness and impact strength of Medium Carbon Steel which treated at differenttypes of heat treatment processes. Heat treatment achieved in this work was respectively,heating, quenching and tempering. The specimens were heated to 850°C and left for 45minutes inside the furnace as a holding time at that temperature, then quenching process wasperformed in four types of quenching media (still air, cold water (2°C), oil and polymersolution), respectively. Thereafter, the samples were tempered at 200°C, 400°C, and 600°Cwith one hour as a soaking time for each temperature, then were all cooled by still air. Whenthe heat treatment process was completed, the surface roughness, hardness, impact strengthand microstructure tests were performed. The results showed a change and clearimprovement of surface roughness, mechanical properties and microstructure afterquenching was achieved, as well as the change that took place due to the increasingtoughness and ductility by reducing of brittleness of samples.


2021 ◽  
Vol 1 (1) ◽  
pp. 51
Author(s):  
Alfan Ekajati Latief ◽  
Syahril Sayuti ◽  
Rakean Wide Windujati

 ABSTRAKTanto merupakan senjata tajam yang berasal dari Jepang dan merupakan senjata kedua bagi para Samurai di Jepang. Tanto biasa terbuat dari baja karbon menengah hingga baja karbon tinggi yang. Material baja yang digunakan untuk pembuatan Tanto dalam penelitian ini adalah baja AISI seri O1 karena memiliki karakteristik sifat mampu bentuk yang baik serat dapat dikuatkan melalui proses heat treatment. Material baja ini dibuat dengan proses tempa lipat  dengan variasi tempa empat lipatan dan satu lipatan. Pembuatan Tanto dan spesimen uji dilakukan dengan proses tempa lipat secara konvensional menggunakan tungku arang, dengan temperatur tempa rata-rata yaitu ±1200oC, kemudian dilanjutkan dengan quenching pada temperatur ± 850oC, serta tempering pada temperatur ±250oC. Penelitian ditujukan untuk mengetahui pengaruh dari proses tempa empat lipatan dan tempa satu lipatan terhadap sifat mekanik, yaitu kekerasan dan kekuatan impak serta untuk melihat perubahan pada struktur mikro. Hasil pengujian menunjukkan bahwa nilai kekerasan paling tinggi sebesar41HRC yang dimiliki oleh pada raw material, ,sedangkan nilai impak paling tinggi sebesar 224,02 Joule/cm² ayng dicapai oleh material dengan proses tempa empat lipatan, Fasa akhir yang ditemukan pada baja tempa empat lipatan adalah  bainit dan martensit, sementara  perlit dan ferit ditemukan  pada baja satu lipatan, dan lath martensit ditemukan pada pada raw material  Kata kunci: Pisau Tanto, Tempa lipat ,Quenching, Tempering, Uji Impak  ABSTRACT Tanto is a sharp weapon originating  from Japan and is the second weapon for Samurai in Japan. Tanto is usually made of medium carbon steel to high carbon steel. The material which is used in this research is AISI O1 series steel because of its high ability to be formed and also can be made tough through a heat treatment process. This steel is made by folding forge process, with variation in number of folding, which is 4 folds and 1 fold. The making of Tanto and test specimens was carried out by conventional fold forging processes by using a charcoal furnace, with an average forging temperature at ± 1200oC, continue with quenching at ± 850oC, and tempering at ± 250oC. The research is carried out in order to determine the effect of the four-folds forging and one-fold forging to the mechanical behavior, which are hardness and impact strength,  and also to see change in its micro structure. The test that have been carried out shows that the highest hardness value of 41 HRC owned by raw material, while the highest impact value of 224.02 Joules / cm² obtained by material with four layer forging process. Final phases that found in the four-fold forged steel are bainite and martensite, pearlite and ferrite found in one-fold forged steel. and lath martensite in found in the raw material. Keywords: Tanto Knife, Folding Forging, Quenching, Tempering, Testing, Impact Tests


2012 ◽  
Vol 531-532 ◽  
pp. 596-599
Author(s):  
Kai Zhang ◽  
Shang Wen Lu ◽  
Yao Hui Ou ◽  
Xiao Dong Wang ◽  
Ning Zhong

The recently developed “quenching and partitioning” heat treatment and “quenching-partitioning-tempering” heat treatment are novel processing technologies, which are designed for achieving advanced high strength steels (AHSS) with combination of high strength and adequate ductility. In present study, a medium carbon steel containing Nb was subjected to the Q-P-T process, and both the microstructure and mechanical properties was studied. The experimental results show that the Nb-microalloyed steel demonstrates high tensile strength and relatively high elongation. The microstructure of the steel was investigated in terms of scanning electron microscope and transmission electron microscope, and the results indicate that the Q-P-T steel consist of fine martensite laths with dispersive carbide precipitates and the film-like interlath retained austenite. The orientation relationships between martensite and retained austenite is as well-known Kurdjurmov-Sachs relationship and Nishiyama-Wasserman relationship.


2014 ◽  
Vol 909 ◽  
pp. 100-104
Author(s):  
Mohamed A. Gebril ◽  
M.S. Aldlemey ◽  
Farag I. Haider

In this work, the investigations were carried out to study the effect of heat treatment at dual phase of austenite and ferrite on mechanical properties , microstructure and corrosion rate of low alloyed medium carbon steel. The specimens were divided into five groups, first group, specimens were heated to the duel phase region at temperature of 740°C soaked for 30 minutes and quenched in water. The second group, The specimens were heated to 740°C soaked for 30 minutes and quenched in water, then tempered to 480°C soaked for 20 minutes. The third group the specimens were heated to austenizing temperature of 840°C soaked for 30 minutes and quenched in water, then the specimens reheated to the dual phase region at 740°C, soaked for 30 minutes and quenched in water, then the specimens were tempered at temperature 480°C for 30 minutes. The forth group, the specimens were heated to austenizing temperature of 840°C soaked for 30 minutes and quenched in water, this process were repeated again before the specimens were thereafter heated to the dual phase region at temperature of 740°C, soaked for 20 minutes and quenched in water, then the specimens were tempered at temperature 480°C for 20 minutes. The fifth group, the specimens were heated to austenizing temperature of 840°C soaked for 20 minutes and quenched in water, this process were repeated two times again before the specimens were thereafter heated to the dual phase region at temperature of 740°C, soaked for 20 minutes and quenched in water, then the specimens finally tempered at temperature 480°C for 20 minutes. The results proved the hardness increase after heat treatment at first and second group, at third group the highest hardness value was due to formation of martensite and ferrite, but at fourth and fifth groups hardness decreases due to appearance of carbides particles, also corrosion rate usually increases with two phase at microstructure than stable one phase, third group have less corrosion rate than fourth and fifth due to carbides particles formation which lead to more corrosion rate due to three phases presents.


Author(s):  
Noor Mazni Ismail ◽  
Nurul Aida Amir Khatif ◽  
Mohamad Aliff Kamil Awang Kecik ◽  
Mohd Ali Hanafiah Shaharudin

Sign in / Sign up

Export Citation Format

Share Document