scholarly journals Wire and Arc Additive Manufacturing of Aluminum Components

Metals ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 608 ◽  
Author(s):  
Markus Köhler ◽  
Sierk Fiebig ◽  
Jonas Hensel ◽  
Klaus Dilger

An increasing demand for flexibility and product integration, combined with reduced product development cycles, leads to continuous development of new manufacturing technologies such as additive manufacturing. Wire and arc additive manufacturing (WAAM) provides promising technology for the near net-shape production of large structures with complex geometry, using cost efficient production resources such as arc welding technology and wire materials. Compared to powder-based additive manufacturing processes, WAAM offers high deposition rates as well as enhanced material utilization. Because of the layer-by-layer built up approach, process conditions such as energy input, arc characteristics, and material composition result in a different processability during the additive manufacturing process. This experimental study aims to describe the effects of the welding process on buildup accuracy and material properties during wire arc additive manufacturing of aluminum structures. Following a process development using pulse cold metal transfer (CMT-P), linear wall samples were manufactured with variations of the filler metal. The samples were analyzed in terms of surface finishing, hardness, and residual stress. Furthermore, mechanical properties were determined in different building directions.

Metals ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 952
Author(s):  
Markus Köhler ◽  
Jonas Hensel ◽  
Klaus Dilger

Wire and arc additive manufacturing (WAAM) provides a promising alternative to conventional machining for the production of large structures with complex geometry, as well as individualized low quantity components, using cost-efficient production resources. Due to the layer-by-layer build-up approach, process conditions, such as energy input, deposition patterns and heat conduction during the additive manufacturing process result in a unique thermal history of the structure, affecting the build-up properties. This experimental study aims to describe the effects of thermal cycling on the geometrical and material properties of wire arc additive manufactured Al-5356 aluminum alloy. Under consideration, that Al-5356 is a non-heat treatable alloy, a significant effect on geometrical formation is expected. Linear wall samples were manufactured using pulsed cold metal transfer (CMT-P) under variation of wire-feed rate, travel speed and interpass temperatures. The samples were analyzed in terms of geometry; microstructural composition; hardness and residual stress. Furthermore, the mechanical properties were determined in different building directions.


2019 ◽  
Vol 269 ◽  
pp. 05002
Author(s):  
Priyantomo Agustinus Ananda

WAAM ( Wire + Arc Additive Manufacturing) is a process of adding material layer by layer in order to build a near net shape components. It shows a further promising future for fabricating large expensive metal components with complex geometry. Engineering Procurement and Construction (EPC) company as one of the industrial section which related with engineering design and products, wide range of material type, and shop based or site based manufacturing process have been dealing with conventional manufacturing and procurement process in order to fulfill its requirement for custom parts and items for the project completion purpose. During the conventional process, there is a risk during the transportation of the products from the manufacturing shop to then site project, this risk is even greater when the delivery time take part as one of the essential part which affect the project schedule. Wire Arc Additive Manufacturing process offering an alternative process to shorten the delivery time and process for a selected material and engineered items, with the consideration of essential variables which can affect the final products of WAAM process, such as : heat input, wire feed speed, travel speed, shielding gas, welding process and robotic system applied. In this paper, the possibilities of WAAM application in EPC company will be assessed, an in depth literature review of the various process which possible to applied, include the loss and benefit compared with conventional method will be presented. The main objective is to identify the current challenge and the prospect of WAAM application in EPC company.


Author(s):  
Yashwant Koli ◽  
N Yuvaraj ◽  
Aravindan Sivanandam ◽  
Vipin

Nowadays, rapid prototyping is an emerging trend that is followed by industries and auto sector on a large scale which produces intricate geometrical shapes for industrial applications. The wire arc additive manufacturing (WAAM) technique produces large scale industrial products which having intricate geometrical shapes, which is fabricated by layer by layer metal deposition. In this paper, the CMT technique is used to fabricate single-walled WAAM samples. CMT has a high deposition rate, lower thermal heat input and high cladding efficiency characteristics. Humping is a common defect encountered in the WAAM method which not only deteriorates the bead geometry/weld aesthetics but also limits the positional capability in the process. Humping defect also plays a vital role in the reduction of hardness and tensile strength of the fabricated WAAM sample. The humping defect can be controlled by using low heat input parameters which ultimately improves the mechanical properties of WAAM samples. Two types of path planning directions namely uni-directional and bi-directional are adopted in this paper. Results show that the optimum WAAM sample can be achieved by adopting a bi-directional strategy and operating with lower heat input process parameters. This avoids both material wastage and humping defect of the fabricated samples.


Metals ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 578 ◽  
Author(s):  
Philipp Henckell ◽  
Yarop Ali ◽  
Andreas Metz ◽  
Jean Pierre Bergmann ◽  
Jan Reimann

As part of a feasibility study, an alternative production process for titanium aluminides was investigated. This process is based on in situ alloying by means of a multi-wire technique in the layer-wise additive manufacturing process. Thereby, gas metal arc welding (GMAW) was combined with additional hot-wire feeding. By using two separate wires made of titanium and aluminum, it is possible to implement the alloy formation of titanium aluminides directly in the weld bead of the welding process. In this study, wall structures were built layer-by-layer with alloy compositions between 10 at% and 55 at% aluminum by changing the feeding rates. During this investigation, the macroscopic characteristics, microstructural formation, and the change of the microhardness values were analyzed. A close examination of the influence of welding speed and post-process heat treatment on the Ti–47Al alloy was performed; this being particularly relevant due to its economically wide spread applications.


2021 ◽  
Author(s):  
Dejan Kovšca ◽  
Bojan Starman ◽  
Aljaž Ščetinec ◽  
Damjan Klobčar ◽  
Nikolaj Mole

Wire-arc welding-based additive manufacturing (WAAM) is a 3D printing technology for production of near-net-shape parts with complex geometry. This printing technology enables to build up a required shape layer by layer with a deposition of a consumable welding wire, where the welding arc is a source of heat. Welding is usually performed by CNC-controlled robotic manipulator, which provides a controlled location of material layer adding. Because the process itself involves thermo-mechanically complex phenomena, Finite Element-based virtual models are commonly employed to optimize the process parameters. This paper presents advanced computational modelling of the WAAM of a tube. A thermo-mechanical numerical model of the process is calibrated against experimental data, measured as temperature variation at the acquisition point. The virtual modelling starts with a preparation of the tube geometry in CAD software, where the geometry of the single-layer cross-section is assumed. The geometry is then exported to a G-code format data file and used to control robotic manipulator motion. On the other side, the code serves as an input to in-house developed code for automatic FEs activation in the simulation of the material layer-adding process. The time of activation of the finite elements (FEs) is directly related to the material deposition rate. The activation of the FEs is followed by a heat source, modeled with a double ellipsoidal power density distribution. The thermo-mechanical problem was solved as uncoupled to speed-up computation.


Metals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1164
Author(s):  
Jisun Kim ◽  
Jaewoong Kim ◽  
Changmin Pyo

This study compared the mechanical properties of the NAB (Ni-Al-bronze) material fabricated using wire arc additive manufacturing (WAAM) technology with those of the cast NAB. Using a CMT (cold metal transfer) welding process, this study analyzed the bead shape for six welding conditions, determined an appropriate bead shape, and fabricated a square bulk NAB material using the bead shape. For a mechanical properties comparison, the study obtained two test specimens per welding direction from the fabricated bulk NAB material, and compared those with the cast NAB materials. In the tensile test, the deposited NAB material showed significantly better results than the cast NAB; furthermore, the deposited NAB material showed better performance than the cast NAB material in the Vickers hardness test, impact test and wear test. In addition, the deposited NAB showed anisotropy depending on the welding direction, and showed high tensile strength, hardness and shock absorption in the longitudinal direction of the welding line.


Metals ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 1009 ◽  
Author(s):  
Marcel Graf ◽  
Andre Hälsig ◽  
Kevin Höfer ◽  
Birgit Awiszus ◽  
Peter Mayr

Additive manufacturing processes have been investigated for some years, and are commonly used industrially in the field of plastics for small- and medium-sized series. The use of metallic deposition material has been intensively studied on the laboratory scale, but the numerical prediction is not yet state of the art. This paper examines numerical approaches for predicting temperature fields, distortions, and mechanical properties using the Finite Element (FE) software MSC Marc. For process mapping, the filler materials G4Si1 (1.5130) for steel, and AZ31 for magnesium, were first characterized in terms of thermo-physical and thermo-mechanical properties with process-relevant cast microstructure. These material parameters are necessary for a detailed thermo-mechanical coupled Finite Element Method (FEM). The focus of the investigations was on the numerical analysis of the influence of the wire feed (2.5–5.0 m/min) and the weld path orientation (unidirectional or continuous) on the temperature evolution for multi-layered walls of miscellaneous materials. For the calibration of the numerical model, the real welding experiments were carried out using the gas-metal arc-welding process—cold metal transfer (CMT) technology. A uniform wall geometry can be produced with a continuous welding path, because a more homogeneous temperature distribution results.


Materials ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 1449 ◽  
Author(s):  
José Prado-Cerqueira ◽  
Ana Camacho ◽  
José Diéguez ◽  
Álvaro Rodríguez-Prieto ◽  
Ana Aragón ◽  
...  

One of the challenges in additive manufacturing (AM) of metallic materials is to obtain workpieces free of defects with excellent physical, mechanical, and metallurgical properties. In wire and arc additive manufacturing (WAAM) the influences of process conditions on thermal history, microstructure and resultant mechanical and surface properties of parts must be analyzed. In this work, 3D metallic parts of mild steel wire (American Welding Society-AWS ER70S-6) are built with a WAAM process by depositing layers of material on a substrate of a S235 JR steel sheet of 3 mm thickness under different process conditions, using as welding process the gas metal arc welding (GMAW) with cold metal transfer (CMT) technology, combined with a positioning system such as a computer numerical controlled (CNC) milling machine. Considering the hardness profiles, the estimated ultimate tensile strengths (UTS) derived from the hardness measurements and the microstructure findings, it can be concluded that the most favorable process conditions are the ones provided by CMT, with homogeneous hardness profiles, good mechanical strengths in accordance to conditions defined by standard, and without formation of a decohesionated external layer; CMT Continuous is the optimal option as the mechanical properties are better than single CMT.


2020 ◽  
Vol 326 ◽  
pp. 01003
Author(s):  
Thomas Klein ◽  
Alois Birgmann ◽  
Martin Schnall

Wire-arc additive manufacturing (WAAM) has received considerable attention in the past years due to advantages in terms of deposition rate, design freedom, buy-to-fly ratio and economic factors. This process can generally be conducted using conventional or near-conventional welding equipment to fabricate intricate but relatively large-scale structures. The present contribution explores options to utilize this novel process not only for manufacturing of particular aluminium structures, but to create the actual alloy composition during processing. Thereby, the possibilities of dual-wire techniques based on cold metal transfer (CMT) to create alloys in the welding process in situ is investigated. For this purpose, a modified CMT twin welding system is used with standard wires differing significantly in their alloying content. The characterization of the chemical compositions at different specimen positions suggests good chemical homogeneity after initial process optimization steps. The microstructural homogeneity is analysed by means of optical light microscopy and scanning electron microscopy. Quantified phase fractions underpin non-equilibrium solidification conditions, when compared to theoretical equilibrium predictions. The assessment of the performed analyses suggests that dual-wire processes are powerful in terms of enhancing achievable depositions rates as well as enabling in situ alloying. This approach might be expandable to multi-wire-based techniques.


2021 ◽  
Vol 11 (10) ◽  
pp. 4694
Author(s):  
Christian Wacker ◽  
Markus Köhler ◽  
Martin David ◽  
Franziska Aschersleben ◽  
Felix Gabriel ◽  
...  

Wire arc additive manufacturing (WAAM) is a direct energy deposition (DED) process with high deposition rates, but deformation and distortion can occur due to the high energy input and resulting strains. Despite great efforts, the prediction of distortion and resulting geometry in additive manufacturing processes using WAAM remains challenging. In this work, an artificial neural network (ANN) is established to predict welding distortion and geometric accuracy for multilayer WAAM structures. For demonstration purposes, the ANN creation process is presented on a smaller scale for multilayer beads on plate welds on a thin substrate sheet. Multiple concepts for the creation of ANNs and the handling of outliers are developed, implemented, and compared. Good results have been achieved by applying an enhanced ANN using deformation and geometry from the previously deposited layer. With further adaptions to this method, a prediction of additive welded structures, geometries, and shapes in defined segments is conceivable, which would enable a multitude of applications for ANNs in the WAAM-Process, especially for applications closer to industrial use cases. It would be feasible to use them as preparatory measures for multi-segmented structures as well as an application during the welding process to continuously adapt parameters for a higher resulting component quality.


Sign in / Sign up

Export Citation Format

Share Document