scholarly journals On the Influence of Loading Order in Nanostructural Fatigue Crack Propagation in BCC Iron—A Molecular Dynamics Study

Metals ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 684 ◽  
Author(s):  
Markus Ladinek ◽  
Thomas Hofer

Most investigations dealing with fatigue crack propagation on the nanoscale, limit their studies on a loading scenario of constant stress or strain amplitudes. Since such a load scenario is rather rare, this paper aims to examine the influence of the load sequence on the crack growth using bcc iron. For this purpose, a specimen containing a central crack was loaded repeatedly by varying the load amplitude. All computations were carried out using molecular dynamics methods (MD), and the material behaviour was represented by utilising an embedded atom method (EAM) potential. Significant deviation in the crack growth behaviour was observed when loading the specimens with variable amplitudes rather than with constant amplitudes. Cracks did not only extend during the loading phase but also in the initial phase of the unloading process where cracks expanded from voids that had been formed in the last phase of loading. These voids coalesced with the main crack as the specimen was subjected to further loading.

2004 ◽  
Vol 126 (1) ◽  
pp. 77-86 ◽  
Author(s):  
Yanyao Jiang ◽  
Miaolin Feng

Fatigue crack propagation was modeled by using the cyclic plasticity material properties and fatigue constants for crack initiation. The cyclic elastic-plastic stress-strain field near the crack tip was analyzed using the finite element method with the implementation of a robust cyclic plasticity theory. An incremental multiaxial fatigue criterion was employed to determine the fatigue damage. A straightforward method was developed to determine the fatigue crack growth rate. Crack propagation behavior of a material was obtained without any additional assumptions or fitting. Benchmark Mode I fatigue crack growth experiments were conducted using 1070 steel at room temperature. The approach developed was able to quantitatively capture all the important fatigue crack propagation behaviors including the overload and the R-ratio effects on crack propagation and threshold. The models provide a new perspective for the R-ratio effects. The results support the notion that the fatigue crack initiation and propagation behaviors are governed by the same fatigue damage mechanisms. Crack growth can be treated as a process of continuous crack nucleation.


Author(s):  
João Ferreira ◽  
José A. F. O. Correia ◽  
Grzegorz Lesiuk ◽  
Sergio Blasón González ◽  
Maria Cristina R. Gonzalez ◽  
...  

Pressure vessels and piping are commonly subjected to plastic deformation during manufacturing or installation. This pre-deformation history, usually called pre-strain, may have a significant influence on the resistance against fatigue crack growth of the material. Several studies have been performed to investigate the pre-strain effects on the pure mode I fatigue crack propagation, but less on mixed-mode (I+II) fatigue crack propagation conditions. The present study aims at investigating the effect of tensile plastic pre-strain on fatigue crack growth behavior (da/dN vs. ΔK) of the P355NL1 pressure vessel steel. For that purpose, fatigue crack propagation tests were conducted on specimens with two distinct degrees of pre-strain: 0% and 6%, under mixed mode (I+II) conditions using CTS specimens. Moreover, for comparison purposes, CT specimens were tested under pure mode I conditions for pre-strains of 0% and 3%. Contrary to the majority of previous studies, that applied plastic deformation directly on the machined specimen, in this work the pre-straining operation was carried out prior to the machining of the specimens with the objective to minimize residual stress effects and distortions. Results revealed that, for the P355NL1 steel, the tensile pre-strain increased fatigue crack initiation angle and reduced fatigue crack growth rates in the Paris region for mixed mode conditions. The pre-straining procedure had a clear impact on the Paris law constants, increasing the coefficient and decreasing the exponent. In the low ΔK region, results indicate that pre-strain causes a decrease in ΔKth.


Metals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1656
Author(s):  
Mansur Ahmed ◽  
Md. Saiful Islam ◽  
Shuo Yin ◽  
Richard Coull ◽  
Dariusz Rozumek

This paper investigated the fatigue crack propagation mechanism of CP Ti at various stress amplitudes (175, 200, 227 MPa). One single crack at 175 MPa and three main cracks via sub-crack coalescence at 227 MPa were found to be responsible for fatigue failure. Crack deflection and crack branching that cause roughness-induced crack closure (RICC) appeared at all studied stress amplitudes; hence, RICC at various stages of crack propagation (100, 300 and 500 µm) could be quantitatively calculated. Noticeably, a lower RICC at higher stress amplitudes (227 MPa) for fatigue cracks longer than 100 µm was found than for those at 175 MPa. This caused the variation in crack growth rates in the studied conditions.


2018 ◽  
Vol 1146 ◽  
pp. 44-56 ◽  
Author(s):  
János Lukács ◽  
Ádám Dobosy ◽  
Marcell Gáspár

The objective of the paper is to present the newest results of our complex research work. In order to determination and comparison of the fatigue resistance, fatigue crack growth tests were performed on different grades of S690QL quenched and tempered, and S960TM thermomechanically rolled high strength steels.15 mmand30 mmthick base materials were used for our investigations. Welded joints were made from these base materials, using gas metal arc welding with matching, overmatching, and undermatching filler metals. In the paper, the performance of the welding experiments will be presented, especially with the difficulties of the filler material selection; along with the results of the fatigue crack growth examinations executed on the base materials and its welded joints. Statistical aspects were applied both for the presenting of the possible locations of the cracks in the base materials and the welded joints and for the processing of the measured data. Furthermore, the results will be compared with each other, and the possibility of derivation of fatigue crack propagation limit curves will be referred.


Author(s):  
Kokleang Vor ◽  
Catherine Gardin ◽  
Christine Sarrazin-Baudoux ◽  
Jean Petit ◽  
Claude Amzallag

The scope of this study is to investigate the effect of tensile prestrain on crack growth behavior in a 304L stainless steel. Fatigue crack propagation tests were performed on single-edge notched tension (SENT) raw specimens (0% of prestrain) and on prestrained specimens (2% and 10%). On one hand, it is found that the different levels of prestrain exhibit no significant influence on crack propagation in the high range of Stress Intensity Factor (SIF), where there is no detectable crack closure. On the other hand, a clear effect of prestrain on crack growth rate can be observed in the near threshold region where closure is detected. Thus, it can be concluded that the prestrain mainly affects the crack growth rate through its influence on the crack closure.


1974 ◽  
Vol 96 (4) ◽  
pp. 249-254 ◽  
Author(s):  
L. A. James

Linear-elastic fracture mechanics techniques were used to characterize the fatigue-crack propagation behavior of Incoloy 800 in an air environment over the temperature range 75 to 1200 deg F (24 to 649 deg F). Crack growth rates were measured over the range 5×10−7 to 5×10−5 in./cycle. Material Grades 1 and 2 were found to exhibit essentially the same behavior over this range. In general, crack growth rates increased with increasing test temperature, although the increases were less then previously noted for austenitic stainless steels. This difference is probably related to the superior oxidation resistance of Incoloy 800.


2008 ◽  
Vol 584-586 ◽  
pp. 815-820 ◽  
Author(s):  
Lothar W. Meyer ◽  
Kristin Sommer ◽  
T. Halle ◽  
Matthias Hockauf

Crack growth in AA6060 after two and eight equal-channel angular extrusions (ECAE), showing a bimodal microstructure and a homogenous ultrafine-grained microstructure, respectively, are compared to the coarse grained counterpart. Furthermore, an optimized condition, obtained by combining one ECA-extrusion and a subsequent short aging treatment is included. Fatigue crack growth behaviour in the near-threshold regime and the region of stable crack growth is investigated and related to microstructural features such as grain size, grain size distribution, grain boundary characteristics and ductility. Micrographs of crack propagation surfaces reveal information on crack propagation features such as crack path deflection and give an insight to the underlying microstructure. Instrumented Charpy impact tests are performed to investigate crack initiation and propagation under impact conditions. Due to the recovery of ductility during the post-ECAE heat treatment, the optimized condition shows improved fatigue crack properties and higher energy consumption in Charpy impact tests, when compared to the as-processed conditions without heat treatment.


2014 ◽  
Vol 1004-1005 ◽  
pp. 142-147
Author(s):  
Ming Liu ◽  
Kun Zhang ◽  
Sheng Long Dai ◽  
Guo Ai Li ◽  
Min Hao ◽  
...  

The fatigue crack propagation behaviors of an Al-Cu-Mg alloy are investigated in different environments and with varying stress ratios. Fatigue experiments are carried out via a fatigue crack growth rate test in laboratory air, a 3.5% (mass fraction) NaCl solution and a tank seeper. The results show that a corrosion environment has an obvious influence on the fatigue crack growth rate, and the degrees of influence of the two different corrosive environments are basically identical. When the stress ratio is R = 0.5 and 0.06 with a decrease of the stress intensity factor, the difference in the crack propagation rates for the corrosion and air environments gradually increases. However, the corrosion acceleration in each stage of crack propagation is obvious while R=−1.


Sign in / Sign up

Export Citation Format

Share Document