scholarly journals Mathematical Modelling of the Initial Mold Filling with Utilization of an Angled Runner

Metals ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 693 ◽  
Author(s):  
Jun Yin ◽  
Mikael Ersson ◽  
Huahai Mao ◽  
Pär G. Jönsson

The flow pattern plays a crucial role in the uphill teeming process. The non-metallic inclusion generation due to interaction with the mold flux is believed to be influenced by the flow pattern. In this study, a three-dimensional mathematical model of the filling of a gating system for 10, 20, and 30 degrees angled runners was used to predict the fluid flow characteristics. Moreover, a mathematical model with a horizontal runner was applied as a reference. The predictions indicate that the angled-runner-design decreases the hump height during the initial filling stage, which results in less entrapment of mold flux into the mold. Nevertheless, increasing the angle of runner can result in a lower hump height, while the 30 degree angled runner gives a much more stable increase of the hump height during the initial filling stage. Besides CFD calculations, some thermodynamic calculations are taken into account for the chemical reactions between liquid steel and gas. The results show that the bubble shrinks due to the fact that N and O are dissolved into steel. The present findings strongly suggest that changing the horizontal runner to an angled runner would be an effective means of reducing flow unevenness during the initial filling of ingots, if the added steel losses are deemed acceptable.

Author(s):  
Toyotaka Sonoda ◽  
Toshiyuki Arima ◽  
Mineyasu Oana

Experimental and numerical investigations were carried out to gain a better understanding of the flow characteristics within an annular S-shaped duct, including the effect of the inlet boundary layer (IBL) on the flow. A duct with six struts and the same geometry as that used to connect compressor spools on our experimental small two-spool turbofan engine was investigated. A curved downstream annular passage with a similar meridional flow path geometry to that of the centrifugal compressor has been fitted at the exit of S-shaped duct. Two types of the IBL (i.e. thin and thick IBL) were used. Results showed that large differences of flow pattern were observed at the S-Shaped duct exit between two types of the IBL, though the value of “net” total pressure loss has not been remarkably changed. According to “overall” total pressure loss, which includes the IBL loss, the total pressure loss was greatly increased near the hub as compared to that for a thin one. For the thick IBL, a vortex pair related to the hub-side horseshoe vortex and the separated flow found at the strut trailing edge has been clearly captured in the form of the total pressure loss contours and secondary flow vectors, experimentally and numerically. The high-pressure loss regions on either side of the strut wake near the hub may act on a downstream compressor as a large inlet distortion, and strongly affect the downstream compressor performance. There is a much-distorted three-dimensional flow pattern at the exit of S-Shaped duct. This means that the aerodynamic sensitivity of S-Shaped duct to the IBL thickness is very high. Therefore, sufficient carefulness is needed to design not only downstream aerodynamic component (for example centrifugal impeller) but also upstream aerodynamic component (LPC OGV).


2021 ◽  
Vol 2116 (1) ◽  
pp. 012072
Author(s):  
Jingzhi Zhang ◽  
Bengt Sunden ◽  
Vishwas Wadekar ◽  
Zan Wu

Abstract In order to investigate the characteristics of gas-liquid two-phase flows in horizontal mini circular tubes with inner diameters of 3.14 and 6.68 mm, a prism is adopted to improve the light path in the visualization experimental setup. The front and top views of air-water two-phase flow patterns in two tubes are captured synchronously based on the improved method. Three-dimensional gas-liquid interfaces, flow pattern maps, and void fraction are obtained. The experimental results show that tube diameters have significant effects on flow patterns transition lines in the flow pattern maps, but the void fractions are independent on channel sizes. The effect of gravity gradually decreases with decreasing tube diameter, while that of surface tension is enhanced. As a consequence, the proportion of annular flow in flow pattern map increases in mini tubes, while the reverse is true for the stratified flow whose proportion decreases dramatically in mini channels. The void fraction increases with increasing gas quality. Experimental void fractions obtained using the three-dimensional gas-liquid interfaces fit well with correlations in the open literature. The shape of PDF distributions varies with flow patterns, which could be used to identify flow patterns in industrial applications.


1988 ◽  
Vol 110 (4a) ◽  
pp. 855-861 ◽  
Author(s):  
Y. Asako ◽  
M. Faghri

A solution methodology is developed to obtain three-dimensional fluid flow and heat transfer characteristics in the entrance region of a rhombic duct. Owing to the complexity of the geometry, the literature results are limited to the fully developed values. The numerical methodology is based on an algebraic coordinate transformation technique, which maps the complex cross section onto a rectangle, coupled with a calculation procedure for three-dimensional parabolic flows, which reduces the problem to a series of two-dimensional problems. The Nusselt number and friction factor results are obtained for boundary conditions of uniform wall heat flux and uniform wall temperature. The asymptotic values of the Nusselt numbers and friction factors approach the available fully developed results. The entry length results for the limiting case of φ = 90 deg are in perfect agreement with the available experimental and numerical results for a rectangular duct.


1999 ◽  
Vol 121 (3) ◽  
pp. 626-634 ◽  
Author(s):  
T. Sonoda ◽  
T. Arima ◽  
M. Oana

Experimental and numerical investigations were carried out to gain a better understanding of the flow characteristics within an annular S-shaped duct, including the effect of the inlet boundary layer (IBL) on the flow. A duct with six struts and the same geometry as that used to connect compressor spools on our experimental small two-spool turbofan engine was investigated. A curved downstream annular passage with a similar meridional flow path geometry to that of the centrifugal compressor has been fitted at the exit of S-shaped duct. Two types of the IBL (i.e., thin and thick IBL) were used. Results showed that large differences of flow pattern were observed at the S-shaped duct exit between two types of the IBL, though the value of “net” total pressure loss has not been remarkably changed. According to “overall” total pressure loss, which includes the IBL loss, the total pressure loss was greatly increased near the hub as compared to that for a thin one. For the thick IBL, a vortex pair related to the hub-side horseshoe vortex and the separated flow found at the strut trailing edge has been clearly captured in the form of the total pressure loss contours and secondary flow vectors, experimentally and numerically. The high-pressure loss regions on either side of the strut wake near the hub may act on a downstream compressor as a large inlet distortion, and strongly affect the downstream compressor performance. There is a much-distorted three-dimensional flow pattern at the exit of S-shaped duct. This means that the aerodynamic sensitivity of S-shaped duct to the IBL thickness is very high. Therefore, sufficient care is needed to design not only downstream aerodynamic components (for example, centrifugal impeller) but also upstream aerodynamic components (LPC OGV).


1996 ◽  
Vol 39 (1) ◽  
Author(s):  
M. Loddo ◽  
R. Quarto ◽  
D. Schiavone

A multimethodological geophysical survey was performed in the north-western part of the Gargano promontory to study the geological structural setting and the underground fluid flow characteristics. The area has a complex tectonics with some magmatic outcrops and shallow low-enthalpy waters. Electrical, seismic reflection, gravimetric and magnetic surveys were carried out to reconstruct the geological structures; and in order to delineate the hydrogeothermal characteristics of the area, the self-potential survey was mainly used. Moreover magnetic and self-potential measurements were also performed in the Lesina lake. The joint three-dimensional interpretation of the geophysical data disclosed a large horst and graben structure covering a large part of the area. In the central part of the horst a large ramified volcanic body was modelled. The models show some intrusions rising from it to or near to the surface. The main structures are well deep-seated in the Crust and along them deep warm fluids rise as the SP data interpretation indicates.


1991 ◽  
Vol 24 (6) ◽  
pp. 171-177 ◽  
Author(s):  
Zeng Fantang ◽  
Xu Zhencheng ◽  
Chen Xiancheng

A real-time mathematical model for three-dimensional tidal flow and water quality is presented in this paper. A control-volume-based difference method and a “power interpolation distribution” advocated by Patankar (1984) have been employed, and a concept of “separating the top-layer water” has been developed to solve the movable boundary problem. The model is unconditionally stable and convergent. Practical application of the model is illustrated by an example for the Pearl River Estuary.


Sign in / Sign up

Export Citation Format

Share Document