scholarly journals Leaching of Pure Chalcocite in a Chloride Media Using Sea Water and Waste Water

Metals ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 780 ◽  
Author(s):  
Norman Toro ◽  
Williams Briceño ◽  
Kevin Pérez ◽  
Manuel Cánovas ◽  
Emilio Trigueros ◽  
...  

Chalcocite is the most important and abundant secondary copper ore in the world with a rapid dissolution of copper in an acid-chloride environment. In this investigation, the methodology of surface optimization will be applied to evaluate the effect of three independent variables (time, concentration of sulfuric acid and chloride concentration) in the leaching of pure chalcocite to extract the copper with the objective of obtaining a quadratic model that allows us to predict the extraction of copper. The kinetics of copper dissolution in regard to the function of temperature is also analyzed. An ANOVA indicates that the linear variables with the greatest influence are time and the chloride concentration. Also, the concentration of chloride-time exerts a significant synergic effect in the quadratic model. The ANOVA indicates that the quadratic model is representative and the R2 value of 0.92 is valid. The highest copper extraction (67.75%) was obtained at 48 h leaching under conditions of 2 mol/L H2SO4 and 100 g/L chloride. The XRD analysis shows the formation of a stable and non-polluting residue; such as elemental sulfur (S0). This residue was obtained in a leaching time of 4 h at room temperature under conditions of 0.5 mol/L H2SO4 and 50 g/L Cl−.

Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 866
Author(s):  
María E. Taboada ◽  
Pía C. Hernández ◽  
Aldo P. Padilla ◽  
Nathalie E. Jamett ◽  
Teófilo A. Graber

A study of the pretreatment stage and subsequent leaching of a mixed copper ore with different chloride solutions containing iron was carried out. The first stage considered pretreatment tests to decide the best conditions. Two levels of each factor were analyzed, 20 and 50 kg/t of NaCl, 17 and 25 kg/t of H2SO4, 0 and 25 kg/t of Fe2(SO4)3·9.2H2O, 0 and 25 kg/t of Fe2SO4·7H2O, and a curing time of 15 and 30 days. The results showed a significant effect of NaCl and curing time on the extraction, and less effect was found with the variation of acid and iron salts. The second stage included column leaching using a solution with 0.5 g/L of Cu+2, 80 g/L of Cl−, 10 g/L of H2SO4, and variable concentrations of ferric and ferrous ions (0 and 2 g/L). The best copper extraction of 80.2% was found considering a pretreatment of 30 days, 25 kg/t of H2SO4, 50 kg/t of NaCl, and a leaching solution concentration described previously with 2 g/L of Fe+2. The results showed the leaching of all copper oxide species and 20% of the copper sulfide species. In addition, there was a reduction in the acid consumption as the resting time increases. Furthermore, to evaluate a possible decrease in time and acid in pretreatment and chloride in leaching, tests including 10 and 25 kg/t of H2SO4 and 1, 15, and 30 days of curing and a diminution of the NaCl concentration to 20 g/L (content from seawater) were executed. The results showed a significant effect on curing time below 15 days. Furthermore, the slight influence of the decrease of acid on copper extraction gives cost reduction opportunities. The diminution of chloride concentration (80 to 20 g/L) in leaching solution decreases the extraction from 79% to 66.5%. Finally, the Mellado leaching kinetic model was successfully implemented.


2013 ◽  
Vol 19 (1) ◽  
pp. 25-34 ◽  
Author(s):  
Asım Künkül ◽  
Abdulvahap Gülezgin ◽  
Nizamettin Demirkiran

The solutions containing ammonia allow for selective leaching of the copper from a copper ore. In this study, the leaching and kinetics of malachite ore were examined using ammonium acetate solutions as an alternative lixiviant. The effects of some experimental parameters on the leaching of malachite ore were investigated. A kinetic model to represent the effects of these parameters on the leaching rate was developed. It was determined that the leaching rate increased with increasing solution concentration, temperature and stirring speed, and decreasing particle size and solid-to-liquid ratio. It was found that the leaching reaction followed the mixed kinetic control model. The activation energy of this leaching process was determined to be 59.6 kJmol-1. Consequently, it was determined that ammonium acetate solutions could be used as an effective leaching agent for the copper extraction form malachite ore.


2020 ◽  
Vol 74 (5) ◽  
pp. 285-292
Author(s):  
Manuel Saldaña ◽  
Freddy Rodríguez ◽  
Anyelo Rojas ◽  
Kevin Pérez ◽  
Palma Angulo

Multivariate models are a useful tool when studying the effects of independent variables on one or more dependent variables, since this approach allows modeling of the dynamics of complex systems based on simple analytical models with considerable certainty. Due to the decrease in the copper oxide mineral grades, leaching of copper sulfide minerals (secondary sulfides) has positioned itself as a benchmark of operation for the Chilean mining industry. The present work proposes the study of the effects of sulfuric acid, chloride concentration and time on the extraction of copper from sulfuric minerals (chalcocite), considering an experimental design, the surface optimization methodology and the adjustment of a quadratic model. The experimental data were adjusted by multiple regression analysis and were statistically analyzed. A model was developed to represent the copper extraction from the Cu2S mineral as a function of the statistically significant variables (chloride concentration and time) that contribute to explain the variation of the response variable under the set of parameters sampled.


Minerals ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 639 ◽  
Author(s):  
Cynthia M. Torres ◽  
Yousef Ghorbani ◽  
Pía C. Hernández ◽  
Francisca J. Justel ◽  
Matías I. Aravena ◽  
...  

In this paper, the effect of the cupric and chloride ions concentrations on copper dissolution from chalcopyrite concentrate was studied in acidified media. Variables included three different concentrations of Cu2+ (0.5, 1.5, and 2.5 g L−1), four different concentrations of Cl− (0, 5, 7, and 10 g L−1), two different pH values of 1 and 2, and a constant temperature of 60 °C. Results indicated that addition of Cl− to the system improves copper extractions, especially at higher concentrations of Cu2+. Initial copper concentrations in the leaching solution did not significantly affect the copper extraction when Cl− was not present. Better copper extractions were obtained at pH 1 as compared with pH 2. As the Cu2+ and Cl− concentrations were increased, higher values of redox potential were obtained. According to the formation constants of the chloro-complexes, the predominant species in the Cu2+/Cl− system in the studied interval were CuCl+ and Cu2+. Using a model of copper speciation in the experimental range predicted for a single copper concentration with increasing Cl− concentration, the Cu2+ concentration decreased significantly while the concentration of the chloro-complex species CuCl+ increased. In the leached residue, evidence of sulfur formation was found using SEM and corroborated by XRD analysis. When chloride is present in the medium, the amounts of copper and iron in the residue decrease, confirming a positive effect of chloride on the extraction of copper from concentrate for the studied conditions.


Metals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 477
Author(s):  
Kevin Pérez ◽  
Norman Toro ◽  
Manuel Saldaña ◽  
Eleazar Salinas-Rodríguez ◽  
Pedro Robles ◽  
...  

Covellite is a secondary copper sulfide, and it is not abundant. There are few investigations on this mineral in spite of it being formed during the leaching of chalcocite or digenite; the other investigations on covellite are with the use of mineraloids, copper concentrates, and synthetic covellite. The present investigation applied the surface optimization methodology using a central composite face design to evaluate the effect of leaching time, chloride concentration, and sulfuric acid concentration on the level of copper extraction from covellite (84.3% of purity). Copper is dissolved from a sample of pure covellite without the application of temperature or pressure; the importance of its purity is that the behavior of the parameters is analyzed, isolating the impurities that affect leaching. The chloride came from NaCl, and it was effectuated in a size range from –150 to +106 μm. An ANOVA indicated that the leaching time and chloride concentration have the most significant influence, while the copper extraction was independent of sulfuric acid concentration. The experimental data were described by a highly representative quadratic model obtained by linear regression (R2 = 0.99).


Minerals ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 250 ◽  
Author(s):  
Pía C. Hernández ◽  
Junior Dupont ◽  
Osvaldo O. Herreros ◽  
Yecid P. Jimenez ◽  
Cynthia M. Torres

This work investigates the effect of an agglomeration and curing pretreatment on leaching of a copper sulfide ore, mainly chalcopyrite, using mini-columns in acid-nitrate-chloride media. Ten pretreatment tests were conducted to evaluate different variables, namely the addition of nitrate as NaNO3 (11.7 and 23.3 kg/ton), chloride as NaCl (2.1 and 19.8 kg/ton), curing time (20 and 30 days) and repose temperature (25 and 45 °C). The optimum copper extraction of 58.6% was achieved with the addition of 23.3 kg of NaNO3/ton, 19.8 kg of NaCl/ton, and after 30 days of curing at 45 °C. Under these pretreatment conditions, three samples of ore were leached in mini-columns. The studied parameters were temperature (25 and 45 °C) and chloride concentration (20 and 40 g/L). The optimum copper extraction of 63.9% was obtained in the mini-column leaching test at 25 °C, with the use of 20 g/L of chloride. A higher temperature (45 °C) and a higher chloride concentration (40 g/L) negatively affected the extraction. The pretreatment stage had favorable effects, in terms of accelerating copper dissolution and improving leaching of copper sulfide ore in acid-nitrate-chloride media. Waste salts from caliche industry and waste brine from reverse osmosis can be used for providing the nitrate and chloride media.


Metals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 384
Author(s):  
Kevin Pérez ◽  
Ricardo I. Jeldres ◽  
Steven Nieto ◽  
Eleazar Salinas-Rodríguez ◽  
Pedro Robles ◽  
...  

Studying the dissolution of chalcocite allows to understand the behavior of the most abundant secondary sulfide ore in copper deposits, while digenite (Cu1.8S) and other intermediate sulfides (Cu2−xS) are often associated with chalcocite. The most common mechanism of dissolution is by two stages, and chloride ions benefit the kinetics of dissolution. In this study, a pure chalcocite mineral (99.9% according to XRD (X-Ray Diffraction) analysis) is leached in chloride media using NaCl and wastewater as the sources of chloride. Magnetic leaching tests are performed at 65, 75, and 95 °C, using a particle size between −150 and + 106 μm. Chloride concentration and leaching time are the main variables. A substantial dissolution of chalcocite was obtained with 0.5 M H2SO4, 100 g/L of chloride and a leaching time of 3 h. The apparent activation energy (Ea) derived from the slopes of the Arrhenius plots was 36 kJ/mol. The XRD analysis proves the presence of elemental sulfur (S0) as the main component in the leaching residue. No significant differences in copper extraction were detected when using 100 g/L of chloride ion or wastewater (39 g/L).


1937 ◽  
Vol 20 (5) ◽  
pp. 737-766 ◽  
Author(s):  
A. G. Jacques

When 0.1 M NaI is added to the sea water surrounding Valonia iodide appears in the sap, presumably entering as NaI, KI, and HI. As the rate of entrance is not affected by changes in the external pH we conclude that the rate of entrance of HI is negligible in comparison with that of NaI, whose concentration is about 107 times that of HI (the entrance of KI may be neglected for reasons stated). This is in marked contrast with the behavior of sulfide which enters chiefly as H2S. It would seem that permeability to H2S is enormously greater than to Na2S. Similar considerations apply to CO2. In this respect the situation differs greatly from that found with iodide. NaI enters because its activity is greater outside than inside so that no energy need be supplied by the cell. The rate of entrance (i.e. the amount of iodide entering the sap in a given time) is proportional to the external concentration of iodide, or to the external product [N+]o [I-lo, after a certain external concentration of iodide has been reached. At lower concentrations the rate is relatively rapid. The reasons for this are discussed. The rate of passage of NaI through protoplasm is about a million times slower than through water. As the protoplasm is mostly water we may suppose that the delay is due chiefly to the non-aqueous protoplasmic surface layers. It would seem that these must be more than one molecule thick to bring this about. There is no great difference between the rate of entrance in the dark and in the light.


1961 ◽  
Vol 38 (3) ◽  
pp. 521-530 ◽  
Author(s):  
D. W. SUTCLIFFE

1. Survival and regulation in sea-water media was studied in the freshwater caddises Limnephilus stigma and Anabolia nervosa. 2. The majority of larvae did not survive for more than a few days at external salt concentrations greater than about 6o mM./l. NaCl. 3. In sea-water media the haemolymph osmotic pressure increased to remain slightly hyper-osmotic to the medium. The haemolymph sodium level also increased to remain slightly hypertonic to the medium, but the chloride level was maintained hypotonic until just prior to death of the larvae. 4. When the haemolymph chloride concentration was raised above the normal level, the Malpighian tubule-rectal system elaborated fluid in which the chloride concentration was hypertonic to the haemolymph. The system is highly sensitive to changes in the haemolymph chloride level. 5. The regulation of body-fluid composition in the freshwater caddises is compared with that found previously in the euryhaline larvae of Limnephilus affinis. It is suggested that the maintenance of a low haemolymph sodium concentration in L. affinis larvae is an important part of the adaptation for survival in salt water.


Sign in / Sign up

Export Citation Format

Share Document