scholarly journals Effect of the Number of CFRP Prepregs and Roughness at the Bonding Area on the Spring-Back and Flexural Strength of Hybrid Composites of CFRP Combined with CR980

Metals ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 1054
Author(s):  
Ji Hoon Hwang ◽  
Chul Kyu Jin ◽  
Hyung Yoon Seo ◽  
Chung Gil Kang

Hybrid composites in which a CR980 metal plate was bonded on carbon-fiber-reinforced plastic (CFRP) were prepared. Hybrid composites were two types of CFRP/CR980 hybrid composites and CR980/CFRP hybrid composites. The properties of the hybrid composites according to surface roughness on CR980 plate and the laminating number of CFRP prepregs were analyzed. The spring-back or spring-go angles were also measured through the V-bending test of hybrid composites. In addition, a three-point bending test for the hybrid composites was conducted to measure the flexural strength. Spring-back occurred in the CFRP/CR980 hybrid composites, while spring-go was observed in the CR980/CFRP hybrid composites. Voids were not found at the bonding area of the CFRP and CR980. As the roughness at the bonding area increased, the flexural strength slightly increased. The higher the laminating number of the CFRP prepregs, the lower the deformation value. CFRP/CR980 was deformed more easily than CR980/CFRP.

2007 ◽  
Vol 7 (1 & 2) ◽  
pp. 157
Author(s):  
Nguyen Nguyen ◽  
Phuong Ngoc Diem ◽  
Susan A. Roces ◽  
Florinda T. Bacani ◽  
Masatoshi Kubouchi ◽  
...  

Carbon fiber reinforced plastic (CFRP) composites are being used increasingly not only in strengthening structures of civil infrastructures and aerospace or automotive industries but also in many applications such as in medical fields or chemical plants. The present study relates to resin compositions having beneficial physical and mechanical properties, which may include improved resistance to delamination. This study focused on the different behaviors of CFRP composites when subjected to microwave irradiation. Based on the results of the 3-point bending test and SEM images, the delamination tendencies of breaking the CFRP under microwave were discussed. The results can be summarized as follows: (1) CFRP can be degraded under microwave irradiation; (2) two delamination tendency curves of CFRP by microwave irradiation were observed; (3) only the bending strength values of CFRP decreased with increasing microwave power and residence time; and, (4) the degradation of CFRP by microwave was limited.


2011 ◽  
Vol 365 ◽  
pp. 119-124 ◽  
Author(s):  
Yeou Fong Li ◽  
Shu Ting Kan

This paper presents the mechanical behaviors of hybrid fiber reinforced plastic (HFRP) composite beams. There are two methods were proposed to increase the stiffness of pultruded glass fiber reinforced plastic (GFRP) beam and change the failure mode. The first method is to infill the epoxy mortar into the GFRP beam. The second method is hand layout the GFRP beam by using carbon fiber with different direction fibers to increase the stiffness of the GFRP beam. Three-point bending test was conducted to obtain the force-displacement relationship, stiffness, failure strength and failure mode of the GFRP beams. The test results show that the stiffness of GFRP beam filled with epoxy mortar is twice larger than GFRP beam.


2016 ◽  
Vol 54 (12) ◽  
pp. 1549-1559 ◽  
Author(s):  
MS Lee ◽  
SJ Kim ◽  
OD Lim ◽  
CG Kang

In this study, aluminum samples with various microsurface roughness values were produced by sandblasting to investigate the effect of the Ra (Surface roughness) value on the samples’ mechanical properties. Toward this end, a carbon fiber reinforced plastic/Al5052 hybrid sample was produced, and its mechanical properties were investigated through a tensile test, three-point bending test, and shear lap test. The theoretical and experimental tensile strength values of the hybrid composite were compared. During the bending test, CFRP and AI5052 separated in untreated specimens. A side-view examination revealed that the adhesion was best when the surface roughness was greatest ( Ra = 1.2 µm). Furthermore, shear load increased with the surface roughness. Therefore, the surface treatment was a crucial factor in making the specimen surface even and in increasing the roughness and therefore improving adhesion.


Author(s):  
Qinghua Wang ◽  
Shien RI ◽  
Hiroshi Tsuda ◽  
Yosuke Takashita ◽  
Ryuta Kitamura ◽  
...  

The interlaminar shear behavior of a [±45°] laminated carbon fiber reinforced plastic (CFRP) specimen was investigated utilizing microscale strain mapping in a wide field of view. A three-point bending device was developed under a laser scanning microscope, and the full-field strain distributions including normal, shear and principal strains of CFRP in a three-point bending test were measured using a developed sampling Moire technique. The microscale shear strain concentrations at interfaces between each two adjacent layers were successfully detected and found to be positive-negative alternately distributed before damage occurrence. The 45° layers slipped to the right relative to the -45° layers, visualized from the revised Moire phases and shear strain distributions of the angle-ply CFRP under different loads. The absolute values of the shear strain at interfaces gradually rose with the increase of the bending load, and the sudden decrease of the shear strain peak value implied the occurrence of interlaminar damage. The evolution of the shear strain concentrations is useful in the quantitative evaluation of the potential interlaminar shear failure.


2020 ◽  
Vol 12 (9) ◽  
pp. 1289-1299
Author(s):  
Xiujie Zhu ◽  
Chao Xiong ◽  
Junhui Yin ◽  
Dejun Yin ◽  
Huiyong Deng

The transverse bending and axial compressing mechanical properties of carbon fiber reinforced plastic (CFRP) sandwich laminated square tubes with two kinds of cores, aluminum honeycomb and aluminum foam, respectively, were studied. The failure mechanism and damage processes of the two different CFRP sandwich laminated square tubes were studied by three-point bending and axial compressing experiments, comparing to CFRP hollow laminated square tube. The three-point bending process of CFRP sandwich laminated square tubes were also simulated in ABAQUS/Explicit and the failure mechanism and modes were deeply analyzed. The analytical model of composite laminated box beam using shear-deformable beam theory was extended to calculate the stiffness characteristics of CFRP sandwich laminated square tubes. The variation of bending, axial and shear stiffness in the linear elastic range were predicted. The results show that, after reaching the peak of three-point bending load, the bearing capacity of CFRP hollow laminated square tube reduced greatly due to the buckling instability of the two vertical sides, while that of the CFRP sandwich laminated square tubes were still considerable. A sudden strength damage occurred in the CFRP sandwich laminated tubes under the axial load, and the sandwich panels could slow down the drop of bearing capacity and increase the energy absorption. The load–displacement histories of numerical simulation and experimental result were in good agreement. The differences between analytically calculated and experimental measured stiffness characteristics were within 6.5%. The bending stiffness and axial stiffness of CFRP sandwich laminated tubes are large when the ply angle in the range from 0 to 45 degrees. Compared with the CFRP aluminum foam sandwich square tube, the specific stiffness and specific energy absorption of CFRP aluminum honeycomb sandwich square tube were higher but the energy absorbed was inferior.


Materials ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 1684 ◽  
Author(s):  
Qinghua Wang ◽  
Shien Ri ◽  
Hiroshi Tsuda ◽  
Yosuke Takashita ◽  
Ryuta Kitamura ◽  
...  

In this article, the interlaminar shear behavior of a [±45°]4s laminated carbon fiber reinforced plastic (CFRP) specimen is investigated, by utilizing microscale strain mapping in a wide field of view. A three-point bending device is developed under a laser scanning microscope, and the full-field strain distributions, including normal, shear and principal strains on the cross section of CFRP, in a three-point bending test, are measured using a developed sampling Moiré technique. The microscale shear strain concentrations at interfaces between each two adjacent layers were successfully detected and found to be positive-negative alternately distributed before damage occurrence. The 45° layers slipped to the right relative to the −45° layers, visualized from the revised Moiré phases, and shear strain distributions of the angle-ply CFRP under different loads. The absolute values of the shear strain at interfaces gradually rose with the increase of the bending load, and the sudden decrease of the shear strain peak value implied the occurrence of interlaminar damage. The evolution of the shear strain concentrations is useful in the quantitative evaluation of the potential interlaminar shear failure.


2019 ◽  
Vol 18 ◽  
pp. e191395
Author(s):  
Rafaella Caramori Saab ◽  
Adriana Osten Costacurta ◽  
Marina Samara Baechtold ◽  
Rafaella Ronchi Zinelli ◽  
Ana Beatriz Franco Fernandes ◽  
...  

Aim: To evaluate the physicomechanical properties of different hybrid composites (Charisma Diamond - CD, Aura - AU, NT Premium - NT, Opallis - OP, Filtek Z250 – Z250) after 6 months of aging in distilled water. Methods: Discs were fabricated and color measurements were performed after 24 hours and at 7, 30, and 180 days. Flexural strength was determined using the three-point bending test. For the microhardness test, the specimens were flattened to obtain polished and flat surfaces and indentations. The results for ∆E and microhardness were analyzed by two-way repeated-measures ANOVA and Tukey’s HSD test. The flexural strength results were analyzed by two-way ANOVA and Tukey’s test (α=0.05). Results: The ∆E values for composite resins varied in the following order: CD (3.54)a < Z250 (4.70)ab < AU (4.95)ab < OP (5.20)ab < NT (6.23)b. ∆E values were lower for 24 h (3.84)a < 7 days (4.43)ab < 30 days (4.93)b. The highest values were observed after 180 days (ΔE = 6.54)c. The flexural strength of composite resins varied in the following order: CD (89.17 MPa)a < Z250 (73.06 MPa)b < OP (60.30 MPa)c < NT (51.28 MPa)c < AU (23.77 MPa)d. Flexural strength values were significantly higher for 24 h (68.62 MPa)a < 180 days (51.40 MPa)b. The microhardness of composite resins varied in the following order: Z250 (112.05)a < CD (102.15)ab < OP (92.04)bc < NT (87.77)d < AU (87.68)d. Microhardness was significantly higher for 180 days (113.44)a < 24 h (78.21)b. Conclusion: The microhybrid (Z250) and one of the nanohybrid composites (CD) performed better. The color stability and flexural strength of all tested composites decreased with storage time.


Sign in / Sign up

Export Citation Format

Share Document