scholarly journals Modeling the Influence of Chronic Sleep Restriction on Cortisol Circadian Rhythms, with Implications for Metabolic Disorders

Metabolites ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 483
Author(s):  
Rohit Rao ◽  
Pramod Somvanshi Elizabeth B. Klerman ◽  
Charles Marmar ◽  
Francis J. Doyle

Chronic sleep deficiency is prevalent in modern society and is associated with increased risk of metabolic and other diseases. While the mechanisms by which chronic sleep deficiency induces pathophysiological changes are yet to be elucidated, the hypothalamic–pituitary–adrenal (HPA) axis may be an important mediator of these effects. Cortisol, the primary hormone of the HPA axis, exhibits robust circadian rhythmicity and is moderately influenced by sleep and wake states and other physiology. Several studies have explored the effects of acute or chronic sleep deficiency (i.e., usually from self-selected chronic sleep restriction, CSR) on the HPA axis. Quantifying long-term changes in the circadian rhythm of cortisol under CSR in controlled conditions is inadequately studied due to practical limitations. We use a semi-mechanistic mathematical model of the HPA axis and the sleep/wake cycle to explore the influence of CSR on cortisol circadian rhythmicity. In qualitative agreement with experimental findings, model simulations predict that CSR results in physiologically relevant disruptions in the phase and amplitude of the cortisol rhythm. The mathematical model presented in this work provides a mechanistic framework to further explore how CSR might lead to HPA axis disruption and subsequent development of chronic metabolic complications.

2021 ◽  
Vol 186 (Supplement_1) ◽  
pp. 246-252
Author(s):  
Devon A Hansen ◽  
Brieann C Satterfield ◽  
Matthew E Layton ◽  
Hans P A Van Dongen

ABSTRACT Introduction Military operations often involve intense exposure to stressors combined with acute sleep deprivation, while military personnel also experience high prevalence of chronic sleep deficiency from insomnia and other sleep disorders. However, the impact of acute and chronic sleep deficiency on physiologic stressor responses is poorly understood. In a controlled laboratory study with normal sleepers and individuals with chronic sleep-onset insomnia, we measured responses to an acute stressor administered in a sleep deprivation condition or a control condition. Methods Twenty-two adults (aged 22-40 years; 16 females)—11 healthy normal sleepers and 11 individuals with sleep-onset insomnia—completed a 5-day (4-night) in-laboratory study. After an adaptation day and a baseline day, subjects were assigned to a 38-hour total sleep deprivation (TSD) condition or a control condition; the study ended with a recovery day. At 8:00 PM after 36 hours awake in the sleep deprivation condition or 12 hours awake in the control condition, subjects underwent a Maastricht Acute Stress Test (MAST). Salivary cortisol was measured immediately before the MAST at 8:00 PM, every 15 minutes after the MAST from 8:15 PM until 9:15 PM, and 30 minutes later at 9:45 PM. Baseline salivary cortisol was collected in the evening of the baseline day. Additionally, before and immediately upon completion of the MAST, self-report ratings of affect and pain were collected. Results The MAST elicited a stressor response in both normal sleepers and individuals with sleep-onset insomnia, regardless of the condition, as evidenced by increases in negative affect and pain ratings. Relative to baseline, cortisol levels increased immediately following the MAST, peaked 30 minutes later, and then gradually returned to pre-MAST levels. At the cortisol peak, there was a significant difference across groups and conditions, reflecting a pronounced blunting of the cortisol response in the normal sleepers in the TSD condition and the sleep-onset insomnia group in both the TSD and control conditions. Conclusions Blunted stressor reactivity as a result of sleep deficiency, whether acute or chronic, may reflect reduced resiliency attributable to allostatic load and may put warfighters at increased risk in high-stakes, rapid response scenarios.


2015 ◽  
Vol 22 (1) ◽  
pp. 67-72
Author(s):  
Alina Bodea ◽  
Amorin Remus Popa

AbstractBackground and aims: In the modern society, obesity represents an important health issue, both because the great number of obese patients in the developed and developing countries and the complications that occur in obese patients, accompanied by an increased risk for cardio-metabolic complications, cancer and death. Material and methods: Among the numerous data recorded in the literature, I made reference to about 30 articles supporting certain hypotheses or truths regarding the pathogenesis of obesity and its cardio-metabolic consequences.


2013 ◽  
Vol 331 ◽  
pp. 66-77 ◽  
Author(s):  
Pooja Rajdev ◽  
David Thorsley ◽  
Srinivasan Rajaraman ◽  
Tracy L. Rupp ◽  
Nancy J. Wesensten ◽  
...  

2020 ◽  
Vol 26 (32) ◽  
pp. 3915-3927 ◽  
Author(s):  
Stefano Ballestri ◽  
Claudio Tana ◽  
Maria Di Girolamo ◽  
Maria Cristina Fontana ◽  
Mariano Capitelli ◽  
...  

: Nonalcoholic fatty liver disease (NAFLD) embraces histopathological entities ranging from the relatively benign simple steatosis to the progressive form nonalcoholic steatohepatitis (NASH), which is associated with fibrosis and an increased risk of progression to cirrhosis and hepatocellular carcinoma. NAFLD is the most common liver disease and is associated with extrahepatic comorbidities including a major cardiovascular disease burden. : The non-invasive diagnosis of NAFLD and the identification of subjects at risk of progressive liver disease and cardio-metabolic complications are key in implementing personalized treatment schedules and follow-up strategies. : In this review, we highlight the potential role of ultrasound semiquantitative scores for detecting and assessing steatosis severity, progression of NAFLD, and cardio-metabolic risk. : Ultrasonographic scores of fatty liver severity act as sensors of cardio-metabolic health and may assist in selecting patients to submit to second-line non-invasive imaging techniques and/or liver biopsy.


2020 ◽  
Vol 18 (3) ◽  
pp. 273-281 ◽  
Author(s):  
Panagiotis Anagnostis ◽  
Stavroula Α. Paschou ◽  
Eleftherios Spartalis ◽  
Gerardo Sarno ◽  
Paride De Rosa ◽  
...  

Post-transplant diabetes mellitus (PTDM) and dyslipidaemia are the most common metabolic complications in kidney transplant recipients (KTR). They are associated with a higher risk of lower graft function and survival, as well as an increased risk of cardiovascular disease (CVD). The aim of this review is to provide current data on the epidemiology, pathophysiology and optimal management of these two principal metabolic complications in KTR. Several risk factors in this metabolic milieu are either already present or emerge after renal transplantation, such as those due to immunosuppressive therapy. However, the exact pathogenic mechanisms have not been fully elucidated. Awareness of these disorders is crucial to estimate CVD risk in KTR and optimize screening and therapeutic strategies. These include lifestyle (preferably according to the Mediterranean pattern) and immunosuppressive regimen modification, as well as the best available anti-diabetic (insulin or oral hypoglycaemic agents) and hypolipidaemic (e.g. statins) regimen according to an individual’s metabolic profile and medical history.


2018 ◽  
Vol 15 (1) ◽  
pp. 31-43 ◽  
Author(s):  
Sayantan Nath ◽  
Sambuddha Das ◽  
Aditi Bhowmik ◽  
Sankar Kumar Ghosh ◽  
Yashmin Choudhury

Background:Studies pertaining to association of GSTM1 and GSTT1 null genotypes with risk of T2DM and its complications were often inconclusive, thus spurring the present study.Methods:Meta-analysis of 25 studies for evaluating the role of GSTM1/GSTT1 null polymorphisms in determining the risk for T2DM and 17 studies for evaluating the role of GSTM1/GSTT1 null polymorphisms in development of T2DM related complications were conducted.Results:Our study revealed an association between GSTM1 and GSTT1 null polymorphism with T2DM (GSTM1; OR=1.37;95% CI =1.10-1.70 and GSTT1; OR=1.29;95% CI =1.04-1.61) with an amplified risk of 2.02 fold for combined GSTM1-GSTT1 null genotypes. Furthermore, the GSTT1 null (OR=1.56;95%CI=1.38-1.77) and combined GSTM1-GSTT1 null genotypes (OR=1.91;95%CI=1.25- 2.94) increased the risk for development of T2DM related complications, but not the GSTM1 null genotype. Stratified analyses based on ethnicity revealed GSTM1 and GSTT1 null genotypes increase the risk for T2DM in both Caucasians and Asians, with Asians showing much higher risk of T2DM complications than Caucasians for the same. </P><P> Discussion: GSTM1, GSTT1 and combined GSTM1-GSTT1 null polymorphism may be associated with increased risk for T2DM; while GSTT1 and combined GSTM1-GSTT1 null polymorphism may increase the risk of subsequent development of T2DM complications with Asian population carrying an amplified risk for the polymorphism.Conclusion:Thus GSTM1 and GSTT1 null genotypes increases the risk for Type 2 diabetes mellitus alone, in combination or with regards to ethnicity.


SLEEP ◽  
2020 ◽  
Author(s):  
Erika M Yamazaki ◽  
Caroline A Antler ◽  
Charlotte R Lasek ◽  
Namni Goel

Abstract Study Objectives The amount of recovery sleep needed to fully restore well-established neurobehavioral deficits from sleep loss remains unknown, as does whether the recovery pattern differs across measures after total sleep deprivation (TSD) and chronic sleep restriction (SR). Methods In total, 83 adults received two baseline nights (10–12-hour time in bed [TIB]) followed by five 4-hour TIB SR nights or 36-hour TSD and four recovery nights (R1–R4; 12-hour TIB). Neurobehavioral tests were completed every 2 hours during wakefulness and a Maintenance of Wakefulness Test measured physiological sleepiness. Polysomnography was collected on B2, R1, and R4 nights. Results TSD and SR produced significant deficits in cognitive performance, increases in self-reported sleepiness and fatigue, decreases in vigor, and increases in physiological sleepiness. Neurobehavioral recovery from SR occurred after R1 and was maintained for all measures except Psychomotor Vigilance Test (PVT) lapses and response speed, which failed to completely recover. Neurobehavioral recovery from TSD occurred after R1 and was maintained for all cognitive and self-reported measures, except for vigor. After TSD and SR, R1 recovery sleep was longer and of higher efficiency and better quality than R4 recovery sleep. Conclusions PVT impairments from SR failed to reverse completely; by contrast, vigor did not recover after TSD; all other deficits were reversed after sleep loss. These results suggest that TSD and SR induce sustained, differential biological, physiological, and/or neural changes, which remarkably are not reversed with chronic, long-duration recovery sleep. Our findings have critical implications for the population at large and for military and health professionals.


SLEEP ◽  
2021 ◽  
Author(s):  
Jelena Skorucak ◽  
Nathan Weber ◽  
Mary A Carskadon ◽  
Chelsea Reynolds ◽  
Scott Coussens ◽  
...  

Abstract The high prevalence of chronic sleep restriction in adolescents underscores the importance of understanding how adolescent sleep is regulated under such conditions. One component of sleep regulation is a homeostatic process: if sleep is restricted, then sleep intensity increases. Our knowledge of this process is primarily informed by total sleep deprivation studies and has been incorporated in mathematical models of human sleep regulation. Several animal studies, however, suggest that adaptation occurs in chronic sleep restriction conditions, showing an attenuated or even decreased homeostatic response. We investigated the homeostatic response of adolescents to different sleep opportunities. Thirty-four participants were allocated to one of three groups with 5, 7.5 or 10 h of sleep opportunity per night for 5 nights. Each group underwent a protocol of 9 nights designed to mimic a school week between 2 weekends: 2 baseline nights (10 h sleep opportunity), 5 condition nights (5, 7.5 or 10 h), and two recovery nights (10 h). Measures of sleep homeostasis (slow-wave activity and slow-wave energy) were calculated from frontal and central EEG derivations and compared to predictions derived from simulations of the homeostatic process of the two-process model of sleep regulation. Only minor differences were found between empirical data and model predictions, indicating that sleep homeostasis is preserved under chronic sleep restriction in adolescents. These findings improve our understanding of effects of repetitive short sleep in adolescents.


SLEEP ◽  
2021 ◽  
Vol 44 (Supplement_2) ◽  
pp. A51-A51
Author(s):  
Huan Yang ◽  
Michael Vazquez ◽  
Monika Haack ◽  
Janet Mullington

Abstract Introduction Insufficient sleep is associated with an increased risk of hypertension. It is well established that long-term BP regulation is modulated by the renin-angiotensin-aldosterone system (RAAS) and chronic kidney disease is a strong independent risk factor for development of cardiovascular disease. This study investigated the biomarkers of RAAS and renal function during repetitive exposures to controlled, experimental sleep restriction (SR). We hypothesized an upregulation of RAAS and increased markers of impaired renal function. Methods Twenty-one healthy participants (11 women, average age 31±2 years) completed the 22-day in-hospital SR protocol: permitted 4h of sleep/night from 0300-0700 for 3 nights followed by a recovery sleep, repeated 4 times. Blood samples were collected and plasma renin activity (PRA) was assessed in the morning (7:05am) and in the evening before bedtime (22:45pm) at baseline, experimental days (3rd day of each of the 4 blocks), and recovery. Urinary albumin to creatinine ratio (ACR) was measured from 24-h urinary collection at baseline, first and fourth SR blocks. Estimated glomerulus filtration rate (eGFR) was calculated based on the serum cystatin C levels at baseline and last block of SR. Results Percent change of evening PRA significantly increased during 4 blocks of SR and recovery (SR effect p=0.039), but not morning PRA (SR effect p=0.34). Specifically, evening PRA increased up to 98.4% in the first (p&lt;0.01), 61.3% in the second (p=0.04) SR blocks, and 57.5% (p=0.05) in recovery. Urinary ACR showed no significant changes during first or fourth SR blocks (SR effect p=0.28). In addition, eGFR did not change in the fourth SR block compared to BL (paired t-test, p=0.27). Conclusion We did not see increased markers of impaired renal function (ACR or eGFR). Rather, short-term repetitive exposures to SR significantly increased percent change of PRA measured before bedtime, and evening PRA did not return to BL level during recovery. Our results suggested that sleep deficiency may contribute to hypertension through upregulation of RAAS during wake time. Support (if any) SRSF (CDA to Huan Yang), NIH (R01HL106782 to Dr. Janet Mullington), Harvard Catalyst, Harvard Clinical and Translational Science Center (UL1TR001102).


Sign in / Sign up

Export Citation Format

Share Document