scholarly journals Integrated Metabolomics and Proteomics Dynamics of Serum Samples Reveals Dietary Zeolite Clinoptilolite Supplementation Restores Energy Balance in High Yielding Dairy Cows

Metabolites ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 842
Author(s):  
Sudipa Maity ◽  
Ivana Rubić ◽  
Josipa Kuleš ◽  
Anita Horvatić ◽  
Dražen Đuričić ◽  
...  

Dairy cows can suffer from a negative energy balance (NEB) during their transition from the dry period to early lactation, which can increase the risk of postpartum diseases such as clinical ketosis, mastitis, and fatty liver. Zeolite clinoptilolite (CPL), due to its ion-exchange property, has often been used to treat NEB in animals. However, limited information is available on the dynamics of global metabolomics and proteomic profiles in serum that could provide a better understanding of the associated altered biological pathways in response to CPL. Thus, in the present study, a total 64 serum samples were collected from 8 control and 8 CPL-treated cows at different time points in the prepartum and postpartum stages. Labelled proteomics and untargeted metabolomics resulted in identification of 64 and 21 differentially expressed proteins and metabolites, respectively, which appear to play key roles in restoring energy balance (EB) after CPL supplementation. Joint pathway and interaction analysis revealed cross-talks among valproic acid, leucic acid, glycerol, fibronectin, and kinninogen-1, which could be responsible for restoring NEB. By using a global proteomics and metabolomics strategy, the present study concluded that CPL supplementation could lower NEB in just a few weeks, and explained the possible underlying pathways employed by CPL.

2019 ◽  
Vol 3 (2) ◽  
pp. 607-619
Author(s):  
Novi Mayasari ◽  
Erminio Trevisi ◽  
Annarita Ferrari ◽  
Bas Kemp ◽  
Henk K Parmentier ◽  
...  

Abstract Earlier studies indicated that the inflammatory status of dairy cows in early lactation could not be fully explained by the negative energy balance (NEB) at that moment. The objective of the present study was to determine relationships between inflammatory biomarkers and oxidative stress with uterine health in dairy cows after different dry period lengths. Holstein–Friesian dairy cows were assigned to one of three dry period lengths (0-, 30-, or 60-d) and one of two early lactation rations (glucogenic or lipogenic ration). Cows were fed either a glucogenic or lipogenic ration from 10-d before the expected calving date. Part of the cows which were planned for a 0-d dry period dried themselves off and were attributed to a new group (0 → 30-d dry period), which resulted in total in four dry period groups. Blood was collected (N = 110 cows) in weeks −3, −2, −1, 1, 2, and 4 relative to calving to determine biomarkers for inflammation, liver function, and oxidative stress. Uterine health status (UHS) was monitored by scoring vaginal discharge (VD) based on a 4-point scoring system (0, 1, 2, or 3) in weeks 2 and 3 after calving. Cows were classified as having a healthy uterine environment (HU, VD score = 0 or 1 in both weeks 2 and 3), nonrecovering uterine environment (NRU, VD score = 2 or 3 in week 3), or a recovering uterine environment (RU, VD score = 2 or 3 in week 2 and VD score= 0 or 1 in week 3). Independent of dry period length, cows with NRU had higher plasma haptoglobin (P = 0.05) and lower paraoxonase levels (P < 0.01) in the first 4 weeks after calving and lower liver functionality index (P < 0.01) compared with cows with HU. Cows with NRU had lower plasma albumin (P = 0.02) and creatinine (P = 0.02) compared with cows with a RU, but not compared with cows with HU. Independent of UHS, cows with a 0 → 30-d dry period had higher bilirubin levels compared with cows with 0-, 30-, or 60-d dry period (P < 0.01). Cows with RU and fed a lipogenic ration had higher levels of albumin in plasma compared with cows with NRU and fed a lipogenic ration (P < 0.01). In conclusion, uterine health was related to biomarkers for inflammation (haptoglobin and albumin) and paraoxonase in dairy cows in early lactation. Cows which were planned for a 0-d dry period, but dried themselves off (0 → 30-d dry period group) had higher bilirubin levels, which was possibly related to a more severe NEB in these cows. Inflammatory biomarkers in dairy cows in early lactation were related to uterine health in this period.


2011 ◽  
Vol 78 (4) ◽  
pp. 479-488 ◽  
Author(s):  
Josef Gross ◽  
Hendrika A van Dorland ◽  
Rupert M Bruckmaier ◽  
Frieder J Schwarz

Milk fatty acid (FA) profile is a dynamic pattern influenced by lactational stage, energy balance and dietary composition. In the first part of this study, effects of the energy balance during the proceeding lactation [weeks 1–21 post partum (pp)] on milk FA profile of 30 dairy cows were evaluated under a constant feeding regimen. In the second part, effects of a negative energy balance (NEB) induced by feed restriction on milk FA profile were studied in 40 multiparous dairy cows (20 feed-restricted and 20 control). Feed restriction (energy balance of −63 MJ NEL/d, restriction of 49 % of energy requirements) lasted 3 weeks starting at around 100 days in milk. Milk FA profile changed markedly from week 1 pp up to week 12 pp and remained unchanged thereafter. The proportion of saturated FA (predominantly 10:0, 12:0, 14:0 and 16:0) increased from week 1 pp up to week 12 pp, whereas monounsaturated FA, predominantly the proportion of 18:1,9c decreased as NEB in early lactation became less severe. During the induced NEB, milk FA profile showed a similarly directed pattern as during the NEB in early lactation, although changes were less marked for most FA. Milk FA composition changed rapidly within one week after initiation of feed restriction and tended to adjust to the initial composition despite maintenance of a high NEB. C18:1,9c was increased significantly during the induced NEB indicating mobilization of a considerable amount of adipose tissue. Besides 18:1,9c, changes in saturated FA, monounsaturated FA, de-novo synthesized and preformed FA (sum of FA >C16) reflected energy status in dairy cows and indicated the NEB in early lactation as well as the induced NEB by feed restriction.


2017 ◽  
Vol 45 (1) ◽  
pp. 8
Author(s):  
Tatiele Mumbach ◽  
Raquel Fraga e Silva Raimondo ◽  
Claudia Faccio Demarco ◽  
Vanessa Oliveira Freitas ◽  
Rodrigo Chaves Barcellos Grazziotin ◽  
...  

Background: In order to reduce the effects of a negative energy balance, some measures have been taken into account in nutritional management during the transition period. The use of yeast, has been a good alternative used to improve the rumen metabolism and helping the adjustment of the microbiotato the new diet. The aim of the study was to evaluate the effects of supplementing a combination of yeast culture and hydrolyzed yeast on the metabolism of dairy cows during the transition period.Materials, Methods & Results: The experiment was conducted in a semi-extensive system, using 20 Holstein cows, divided equally into a control group (CG) and a supplemented group (SG). The SG received 28 g/animal/day of a combination of yeast culture and hydrolyzed yeast from 20 ± 2 days pre-calving until early lactation (18 ± 3 days). Serum concentrations of non-esterified fatty acids (NEFA), albumin and urea were determined at calving, and for three time points during the early postpartum period and three time points during the early lactation period. Regarding energy metabolism, prepartum concentrations of NEFA were higher than the physiological standard in both groups. However, NEFA, albumin and urea decreased during the early postpartum period in the supplemented animals and could be attributed to the yeast in enhancing ruminal microorganisms’ cellulolytic capacity, increasing fibre digestibility and starch utilization.Discussion: The increased concentration of non-esterified fatty acids (NEFA) due to the mobilization of fat deposits that happens in the transition period, especially in the postpartum period reflects the cow’s adaptation to the negative energy balance (NEB). The lower concentrations of NEFA observed in the present study could be attributed to the effect of the yeast in enhancing the ruminal microorganisms’ cellulolytic capacity. The control cows had a BCS within the recommended range while the supplemented group had it close to the minimal limit proposed for this period. Thus, supplemented cows lost less BCS during the early postpartum period, had a lower BCS loss during the experimental period and had lower NEFA concentration that the CG. It was possible to observe a difference in serum albumin and urea between treatments only in the postpartum period. Besides showing no significant effect in BCS on prepartum period, control cows had a BCS within the recommended range while the supplemented group had it close to the minimal limit proposed for this period. Cows with high BCS prepartum had higher plasma NEFA before and after calving. It can be observed in the present study in both groups. However, a positive effect in prevent subclinical disorders might be attributed to YC, since the SG showed low NEFA plasma levels compared to the CG.  Thus, supplemented cows lost less BCS during the early postpartum period, had a lower BCS loss during the experimental period and had lower NEFA concentration that the CG. There is a negative correlation between BCS and NEFA in the early postpartum period and this information explains the results observed in the present study where BCS declines in the SG are followed by a NEFA increase. This is not so marked in the CG, indicating that SG supplementation can act by improving digestibility. Yeast supplementation promotes higher output energy, enhancing postpartum performance in dairy cows. Yeast supplementation showed benefits in early lactation compared to the prepartum and early postpartum periods, suggesting that supplementation has to have an adaptation period to be effective in protein synthesis. In conclusion, supplementation with a combination of yeast culture and hydrolyzed yeast to cows during the transition period can positively influence the energy and protein metabolism, reducing the collateral effects of negative energy balance.


Metabolites ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 247
Author(s):  
Timothy D. W. Luke ◽  
Jennie E. Pryce ◽  
William J. Wales ◽  
Simone J. Rochfort

Disorders of energy metabolism, which can result from a failure to adapt to the period of negative energy balance immediately after calving, have significant negative effects on the health, welfare and profitability of dairy cows. The most common biomarkers of energy balance in dairy cows are β-hydroxybutyrate (BHBA) and non-esterified fatty acids (NEFA). While elevated concentrations of these biomarkers are associated with similar negative health and production outcomes, the phenotypic and genetic correlations between them are weak. In this study, we used an untargeted 1H NMR metabolomics approach to investigate the serum metabolomic fingerprints of BHBA and NEFA. Serum samples were collected from 298 cows in early lactation (calibration dataset N = 248, validation N = 50). Metabolomic fingerprinting was done by regressing 1H NMR spectra against BHBA and NEFA concentrations (determined using colorimetric assays) using orthogonal partial least squares regression. Prediction accuracies were high for BHBA models, and moderately high for NEFA models (R2 of external validation of 0.88 and 0.75, respectively). We identified 16 metabolites that were significantly (variable importance of projection score > 1) correlated with the concentration of one or both biomarkers. These metabolites were primarily intermediates of energy, phospholipid, and/or methyl donor metabolism. Of the significant metabolites identified; (1) two (acetate and creatine) were positively correlated with BHBA but negatively correlated with NEFA, (2) nine had similar associations with both BHBA and NEFA, (3) two were correlated with only BHBA concentration, and (4) three were only correlated with NEFA concentration. Overall, our results suggest that BHBA and NEFA are indicative of similar metabolic states in clinically healthy animals, but that several significant metabolic differences exist that help to explain the weak correlations between them. We also identified several metabolites that may be useful intermediate phenotypes in genomic selection for improved metabolic health.


2020 ◽  
Vol 87 (2) ◽  
Author(s):  
Yapin Wang ◽  
Xuemei Nan ◽  
Yiguang Zhao ◽  
Yue Wang ◽  
Linshu Jiang ◽  
...  

ABSTRACT Rumen-protected glucose (RPG) plays an important role in alleviating the negative energy balance of dairy cows. This study used a combination of rumen microbes 16S and metabolomics to elucidate the changes of rumen microbial composition and rumen metabolites of different doses of RPG’s rumen degradation part in early-lactation dairy cows. Twenty-four multiparous Holstein cows in early lactation were randomly allocated to control (CON), low-RPG (LRPG), medium-RPG (MRPG), or high-RPG (HRPG) groups in a randomized block design. The cows were fed a basal total mixed ration diet with 0, 200, 350, and 500 g of RPG per cow per day, respectively. Rumen fluid samples were analyzed using Illumina MiSeq sequencing and ultrahigh-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry. MRPG supplementation increased bacterial richness and diversity, including increasing the relative abundance of cellulolytic bacteria, such as Ruminococcus, Lachnospiraceae_NK3A20_group, Ruminiclostridium, and Lachnospiraceae_UCG-008. MRPG significantly increased the concentrations of acetate, propionate, butyrate, and total volatile fatty acid in the rumen. Ruminal fluid metabolomics analysis showed that RPG supplementation could significantly regulate the synthesis of amino acids digested by protozoa in the rumen. Correlation analysis of the ruminal microbiome and metabolome revealed some potential relationships between major bacterial abundance and metabolite concentrations. Our analysis found that RPG supplementation of different doses can change the diversity of microorganisms in the rumen and affect the rumen fermentation pattern and microbial metabolism and that a daily supplement of 350 g of RPG might be the ideal dose. IMPORTANCE Dairy cows in early lactation are prone to a negative energy balance because their dry matter intake cannot meet the energy requirements of lactation. Rumen-protected glucose is used as an effective feed additive to alleviate the negative energy balance of dairy cows in early lactation. However, one thing that is overlooked is that people often think that rumen-protected glucose is not degraded in the rumen, thus ignoring its impact on the microorganisms in the rumen environment. Our investigation and previous experiments have found that rumen-protected glucose is partially degraded in the rumen. However, there are few reports on this subject. Therefore, we conducted research on this problem and found that rumen-protected glucose supplementation at 350 g/day can promote the development and metabolism of rumen flora. This provides a theoretical basis for the extensive application of rumen bypass glucose at a later stage.


2011 ◽  
Vol 31 (suppl 1) ◽  
pp. 11-17 ◽  
Author(s):  
Alejandra M.B García ◽  
Felipe C Cardoso ◽  
Rómulo Campos ◽  
Diego X Thedy ◽  
Félix H.D González

In early lactation dairy cattle suffer metabolic alterations caused by negative energy balance, which predisposes to fatty liver and ketosis. The aim of this study was to evaluate the metabolic condition of high yielding dairy cows subjected to three treatments for preventing severe lipomobilization and ketosis in early lactation. Fifty four multiparous Holstein cows yielding >30 L/day were divided into four groups: control (CN= no treatment), glucose precursor (PG= propylene-glycol), hepatic protector (Mp= Mercepton®), and energy supplement with salts of linolenic and linoleic faty acids (Mg-E= Megalac-E®). Treatments were administrated randomly at moment of calving until 8 weeks postpartum. Blood samples were collected on days 1, 7, 14, 21, 28, 35, 42 and 49 postpartum. Body condition score (BCS) was evaluated at the same periods and milk yield was recorded at 2nd, 4th, 5th, 6th, 7th, and 8th weeks of lactation. Concentrations of non-esterified fatty acids (NEFA), albumin, AST, ß-hydroxybutyrate (BHBA), cholesterol, glucose, total protein, urea and triglycerides were analyzed in blood samples. Cut-off points for subclinical ketosis were defined when BHBA >1.4 mmol/L and NEFA >0.7 mmol/L. General occurrence of subclinical ketosis was 24% during the period. An ascendant curve of cholesterol and glucose was observed from the 1st to the 8th week of lactation, while any tendency was observed with BHBA and NEFA, although differences among treatments were detected (p<0.05). BCS decreased from a mean of 3.85 at 1st week to 2.53 at 8th week of lactation (p=0.001). Milk yield was higher in the Mg-E group compared with the other treatment groups (p<0.05) Compared with the CN group, the treatments with Mp and PG did not show significant differences in blood biochemistry and milk yield. Cows receiving PG and Mg-E showed higher values of BHBA and NEFA (P<0.05), indicating accentuated lipomobilization. Supplementation with Mg-E also resulted in significant higher concentrations of cholesterol, BHBA, urea, AST and lower values of glycemia. This performance may be explained by the highest milk yield observed with this treatment. Treatments with PG and Mp did not improve milk yield, compared with control cows, but did not show metabolic evidence of ketosis, fat mobilization or fatty liver. These results suggest that treatment with Mg-E improves milk production but induces a higher negative energy balance leading to moderated lipomobilization and ketone bodies production, increasing the risk of fatty liver.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Chang Zhao ◽  
Shi Shu ◽  
Yunlong Bai ◽  
Dong Wang ◽  
Cheng Xia ◽  
...  

Abstract To screen differentially expressed proteins in the blood dairy cows with inactive ovaries caused by a negative energy balance and to determine the roles of the identified proteins in the development of inactive ovaries.Holstein cows at 14 to 21 days postpartum in an intensive dairy farm were examined for their energy balance (EB) status by blood β-hydroxybutyrate (BHBA) and assigned to the inactive ovary (IO) group (n = 50) and the normal oestrus control (CON) group (n = 50) at 60 to 90 days postpartum by means of the oestrus manifestation, rectal examination and B-ultrasound examination. Fourteen differentially expressed proteins from 61 proteins in the plasma of dairy cows with IOs were identified by iTRAQ/LC-MS/MS and GO, KEGG, and PATHWAY analysis. Eleven expressed proteins were upregulated, and 3 expressed proteins were downregulated. Among the 10 differentially expressed proteins verified by Western blot or ELISA, the relative expression levels of ALDOB, IGFBP2, ITIH3 and LDHB in mixed samples and single samples were consistent with the proteomic protein results. PKM2, GPX3, ALDOB, RBP4 and AHSG were significantly different between the two groups (P < 0.05); APOA4 and SPAM1 were not significantly different (P > 0.05) but were still downregulated in the ovarian resting group. This study confirmed that 14 plasma differential proteins in the inactive ovaries of postpartum dairy cows were associated with follicular development, and these findings provide a foundation for further research on the mechanism and prevention of inactive ovaries in dairy cows.


Animals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 342 ◽  
Author(s):  
Jennifer Meyer ◽  
Susanne Ursula Daniels ◽  
Sandra Grindler ◽  
Johanna Tröscher-Mußotter ◽  
Mohamadtaher Alaedin ◽  
...  

Dairy cows are metabolically challenged during the transition period. Furthermore, the process of parturition represents an energy-consuming process. The degree of negative energy balance and recovery from calving also depends on the efficiency of mitochondrial energy generation. At this point, L-carnitine plays an important role for the transfer of fatty acids to the site of their mitochondrial utilisation. A control (n = 30) and an L-carnitine group (n = 29, 25 g rumen-protected L-carnitine per cow and day) were created and blood samples were taken from day 42 ante partum (ap) until day 110 post-partum (pp) to clarify the impact of L-carnitine supplementation on dairy cows, especially during the transition period and early puerperium. Blood and clinical parameters were recorded in high resolution from 0.5 h to 72 h pp. L-carnitine-supplemented cows had higher amounts of milk fat in early lactation and higher triacylglyceride concentrations in plasma ap, indicating increased efficiency of fat oxidation. However, neither recovery from calving nor energy balance and lipomobilisation were influenced by L-carnitine.


Sign in / Sign up

Export Citation Format

Share Document