scholarly journals Microfluidic Single-Cell Manipulation and Analysis: Methods and Applications

Micromachines ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 104 ◽  
Author(s):  
Tao Luo ◽  
Lei Fan ◽  
Rong Zhu ◽  
Dong Sun

In a forest of a hundred thousand trees, no two leaves are alike. Similarly, no two cells in a genetically identical group are the same. This heterogeneity at the single-cell level has been recognized to be vital for the correct interpretation of diagnostic and therapeutic results of diseases, but has been masked for a long time by studying average responses from a population. To comprehensively understand cell heterogeneity, diverse manipulation and comprehensive analysis of cells at the single-cell level are demanded. However, using traditional biological tools, such as petri-dishes and well-plates, is technically challengeable for manipulating and analyzing single-cells with small size and low concentration of target biomolecules. With the development of microfluidics, which is a technology of manipulating and controlling fluids in the range of micro- to pico-liters in networks of channels with dimensions from tens to hundreds of microns, single-cell study has been blooming for almost two decades. Comparing to conventional petri-dish or well-plate experiments, microfluidic single-cell analysis offers advantages of higher throughput, smaller sample volume, automatic sample processing, and lower contamination risk, etc., which made microfluidics an ideal technology for conducting statically meaningful single-cell research. In this review, we will summarize the advances of microfluidics for single-cell manipulation and analysis from the aspects of methods and applications. First, various methods, such as hydrodynamic and electrical approaches, for microfluidic single-cell manipulation will be summarized. Second, single-cell analysis ranging from cellular to genetic level by using microfluidic technology is summarized. Last, we will also discuss the advantages and disadvantages of various microfluidic methods for single-cell manipulation, and then outlook the trend of microfluidic single-cell analysis.

2021 ◽  
Vol 22 (11) ◽  
pp. 5988
Author(s):  
Hyun Kyu Kim ◽  
Tae Won Ha ◽  
Man Ryul Lee

Cells are the basic units of all organisms and are involved in all vital activities, such as proliferation, differentiation, senescence, and apoptosis. A human body consists of more than 30 trillion cells generated through repeated division and differentiation from a single-cell fertilized egg in a highly organized programmatic fashion. Since the recent formation of the Human Cell Atlas consortium, establishing the Human Cell Atlas at the single-cell level has been an ongoing activity with the goal of understanding the mechanisms underlying diseases and vital cellular activities at the level of the single cell. In particular, transcriptome analysis of embryonic stem cells at the single-cell level is of great importance, as these cells are responsible for determining cell fate. Here, we review single-cell analysis techniques that have been actively used in recent years, introduce the single-cell analysis studies currently in progress in pluripotent stem cells and reprogramming, and forecast future studies.


2012 ◽  
Vol 58 (12) ◽  
pp. 1682-1691 ◽  
Author(s):  
Anders Ståhlberg ◽  
Christer Thomsen ◽  
David Ruff ◽  
Pierre Åman

BACKGROUND The single cell represents the basic unit of all organisms. Most investigations have been performed on large cell populations, but understanding cell dynamics and heterogeneity requires single-cell analysis. Current methods for single-cell analysis generally can detect only one class of analytes. METHODS Reverse transcription and the proximity ligation assay were coupled with quantitative PCR and used to quantify any combination of DNA, mRNAs, microRNAs (miRNAs), noncoding RNAs (ncRNAs), and proteins from the same single cell. The method was used on transiently transfected human cells to determine the intracellular concentrations of plasmids, their transcribed mRNAs, translated proteins, and downstream RNA targets. RESULTS We developed a whole-cell lysis buffer to release unfractionated DNA, RNA, and proteins that would not degrade any detectable analyte or inhibit the assay. The dynamic range, analytical sensitivity, and specificity for quantifying DNA, mRNAs, miRNAs, ncRNAs, and proteins were shown to be accurate down to the single-cell level. Correlation studies revealed that the intracellular concentrations of plasmids and their transcribed mRNAs were correlated only moderately with translated protein concentrations (Spearman correlation coefficient, 0.37 and 0.31, respectively; P < 0.01). In addition, an ectopically expressed gene affected the correlations between analytes and this gene, which is related to gene regulation. CONCLUSIONS This method is compatible with most cell-sampling approaches, and generates output for the same parameter for all measured analytes, a feature facilitating comparative data analysis. This approach should open up new avenues in molecular diagnostics for detailed correlation studies of multiple and different classes of analytes at the single-cell level.


2010 ◽  
Vol 22 (5) ◽  
pp. 644-650 ◽  
Author(s):  
Masaru Takeuchi ◽  
◽  
Masahiro Nakajima ◽  
Masaru Kojima ◽  
Toshio Fukuda ◽  
...  

We propose the Thermoresponsive Polymer Actuated (TPA) probe which uses thermoresponsive polymer poly (N-isopropylacrylamide) (PNIPAAm) volume change as an actuator. The proposed probe is applicable to single cell analysis, especially single cell manipulation. The TPA probe can discharge and suck solution in several nanoliters (nl) using the volume change. Normally, it is difficult to realize solution discharge and suction less than several dozen nl by the conventional air- or oil-pressure-actuated probe. We designed the TPA probe for low-cost fabrication and disposable use. The probe also takes in and ejects on a nl order by simply switching a heater on and off. PNIPAAm solution volume change was evaluated in this paper. The manipulation of single microbead and the suction of target cell were also demonstrated by the TPA probe in the semi-closed microchip. It is considered that the TPA probe can contribute to the manipulation of single cell.


Lab on a Chip ◽  
2015 ◽  
Vol 15 (3) ◽  
pp. 637-641 ◽  
Author(s):  
Kyung Jin Son ◽  
Dong-Sik Shin ◽  
Timothy Kwa ◽  
Jungmok You ◽  
Yandong Gao ◽  
...  

We developed a micropatterned photodegradable hydrogel array integrated with reconfigurable microfluidics to enable cell secretion analysis and cell retrieval at the single-cell level.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jeremy A. Lombardo ◽  
Marzieh Aliaghaei ◽  
Quy H. Nguyen ◽  
Kai Kessenbrock ◽  
Jered B. Haun

AbstractTissues are complex mixtures of different cell subtypes, and this diversity is increasingly characterized using high-throughput single cell analysis methods. However, these efforts are hindered, as tissues must first be dissociated into single cell suspensions using methods that are often inefficient, labor-intensive, highly variable, and potentially biased towards certain cell subtypes. Here, we present a microfluidic platform consisting of three tissue processing technologies that combine tissue digestion, disaggregation, and filtration. The platform is evaluated using a diverse array of tissues. For kidney and mammary tumor, microfluidic processing produces 2.5-fold more single cells. Single cell RNA sequencing further reveals that endothelial cells, fibroblasts, and basal epithelium are enriched without affecting stress response. For liver and heart, processing time is dramatically reduced. We also demonstrate that recovery of cells from the system at periodic intervals during processing increases hepatocyte and cardiomyocyte numbers, as well as increases reproducibility from batch-to-batch for all tissues.


Cells ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 285
Author(s):  
Eszter Széles ◽  
Krisztina Nagy ◽  
Ágnes Ábrahám ◽  
Sándor Kovács ◽  
Anna Podmaniczki ◽  
...  

Chlamydomonas reinhardtii is a model organism of increasing biotechnological importance, yet, the evaluation of its life cycle processes and photosynthesis on a single-cell level is largely unresolved. To facilitate the study of the relationship between morphology and photochemistry, we established microfluidics in combination with chlorophyll a fluorescence induction measurements. We developed two types of microfluidic platforms for single-cell investigations: (i) The traps of the “Tulip” device are suitable for capturing and immobilizing single cells, enabling the assessment of their photosynthesis for several hours without binding to a solid support surface. Using this “Tulip” platform, we performed high-quality non-photochemical quenching measurements and confirmed our earlier results on bulk cultures that non-photochemical quenching is higher in ascorbate-deficient mutants (Crvtc2-1) than in the wild-type. (ii) The traps of the “Pot” device were designed for capturing single cells and allowing the growth of the daughter cells within the traps. Using our most performant “Pot” device, we could demonstrate that the FV/FM parameter, an indicator of photosynthetic efficiency, varies considerably during the cell cycle. Our microfluidic devices, therefore, represent versatile platforms for the simultaneous morphological and photosynthetic investigations of C. reinhardtii on a single-cell level.


2019 ◽  
Author(s):  
Wu Liu ◽  
Mehmet U. Caglar ◽  
Zhangming Mao ◽  
Andrew Woodman ◽  
Jamie J. Arnold ◽  
...  

SUMMARYDevelopment of antiviral therapeutics emphasizes minimization of the effective dose and maximization of the toxic dose, first in cell culture and later in animal models. Long-term success of an antiviral therapeutic is determined not only by its efficacy but also by the duration of time required for drug-resistance to evolve. We have developed a microfluidic device comprised of ~6000 wells, with each well containing a microstructure to capture single cells. We have used this device to characterize enterovirus inhibitors with distinct mechanisms of action. In contrast to population methods, single-cell analysis reveals that each class of inhibitor interferes with the viral infection cycle in a manner that can be distinguished by principal component analysis. Single-cell analysis of antiviral candidates reveals not only efficacy but also properties of the members of the viral population most sensitive to the drug, the stage of the lifecycle most affected by the drug, and perhaps even if the drug targets an interaction of the virus with its host.


2020 ◽  
Author(s):  
Tyler N. Chen ◽  
Anushka Gupta ◽  
Mansi Zalavadia ◽  
Aaron M. Streets

AbstractSingle-cell RNA sequencing (scRNA-seq) enables the investigation of complex biological processes in multicellular organisms with high resolution. However, many phenotypic features that are critical to understanding the functional role of cells in a heterogeneous tissue or organ are not directly encoded in the genome and therefore cannot be profiled with scRNA-seq. Quantitative optical microscopy has long been a powerful approach for characterizing diverse cellular phenotypes including cell morphology, protein localization, and chemical composition. Combining scRNA-seq with optical imaging has the potential to provide comprehensive single-cell analysis, allowing for functional integration of gene expression profiling and cell-state characterization. However, it is difficult to track single cells through both measurements; therefore, coupling current scRNA-seq protocols with optical measurements remains a challenge. Here, we report Microfluidic Cell Barcoding and Sequencing (μCB-seq), a microfluidic platform that combines high-resolution imaging and sequencing of single cells. μCB-seq is enabled by a novel fabrication method that preloads primers with known barcode sequences inside addressable reaction chambers of a microfluidic device. In addition to enabling multi-modal single-cell analysis, μCB-seq improves gene detection sensitivity, providing a scalable and accurate method for information-rich characterization of single cells.


2020 ◽  
Vol 52 (10) ◽  
pp. 468-477
Author(s):  
Alexander C. Zambon ◽  
Tom Hsu ◽  
Seunghee Erin Kim ◽  
Miranda Klinck ◽  
Jennifer Stowe ◽  
...  

Much of our understanding of the regulatory mechanisms governing the cell cycle in mammals has relied heavily on methods that measure the aggregate state of a population of cells. While instrumental in shaping our current understanding of cell proliferation, these approaches mask the genetic signatures of rare subpopulations such as quiescent (G0) and very slowly dividing (SD) cells. Results described in this study and those of others using single-cell analysis reveal that even in clonally derived immortalized cancer cells, ∼1–5% of cells can exhibit G0 and SD phenotypes. Therefore to enable the study of these rare cell phenotypes we established an integrated molecular, computational, and imaging approach to track, isolate, and genetically perturb single cells as they proliferate. A genetically encoded cell-cycle reporter (K67p-FUCCI) was used to track single cells as they traversed the cell cycle. A set of R-scripts were written to quantify K67p-FUCCI over time. To enable the further study G0 and SD phenotypes, we retrofitted a live cell imaging system with a micromanipulator to enable single-cell targeting for functional validation studies. Single-cell analysis revealed HT1080 and MCF7 cells had a doubling time of ∼24 and ∼48 h, respectively, with high duration variability in G1 and G2 phases. Direct single-cell microinjection of mRNA encoding (GFP) achieves detectable GFP fluorescence within ∼5 h in both cell types. These findings coupled with the possibility of targeting several hundreds of single cells improves throughput and sensitivity over conventional methods to study rare cell subpopulations.


The Analyst ◽  
2019 ◽  
Vol 144 (10) ◽  
pp. 3226-3238 ◽  
Author(s):  
Jitraporn Vongsvivut ◽  
David Pérez-Guaita ◽  
Bayden R. Wood ◽  
Philip Heraud ◽  
Karina Khambatta ◽  
...  

Coupling synchrotron IR beam to an ATR element enhances spatial resolution suited for high-resolution single cell analysis in biology, medicine and environmental science.


Sign in / Sign up

Export Citation Format

Share Document