scholarly journals Response Enhancement of Pt–AlGaN/GaN HEMT Gas Sensors by Thin AlGaN Barrier with the Source-Connected Gate Configuration at High Temperature

Micromachines ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 537
Author(s):  
Tuan-Anh Vuong ◽  
Ho-Young Cha ◽  
Hyungtak Kim

AlGaN/GaN HEMT hydrogen gas sensors were optimized by AlGaN barrier thickness in the gate-source connected configuration demonstrated high response and robust stability up to 500 °C. First, we found that the hydrogen sensing performance of a conventional normally-on HEMT-based sensor was enhanced when zero voltage was applied on the gate in comparison with a floating-gate condition due to a reduced level of the base current. In the next step, to take advantage of the response increase by VGS = 0 V, a new type of sensor with a source-connected gate (SCG) was fabricated to utilize the normally-on operation of the GaN HEMT sensor as a two-terminal device. AlGaN barrier thickness was thinned by the dry-etching process to gain higher transconductance at a zero-gate bias with the reduction of the distance from the 2DEG channel to the AlGaN surface, thereby significantly improve the hydrogen response. The SCG GaN sensor with an ultra-thin AlGaN barrier (9 nm) exhibited responses of 85% and 20% at 200 and 500 °C, respectively, onto 4%-hydrogen gas, which demonstrates a promising ability for harsh environment applications.

2006 ◽  
Vol 113 (2) ◽  
pp. 797-804 ◽  
Author(s):  
M. Ali ◽  
V. Cimalla ◽  
V. Lebedev ◽  
H. Romanus ◽  
V. Tilak ◽  
...  

2008 ◽  
Vol 600-603 ◽  
pp. 1199-1202 ◽  
Author(s):  
Philip G. Neudeck ◽  
David J. Spry ◽  
Andrew J. Trunek ◽  
Laura J. Evans ◽  
Liang Yu Chen ◽  
...  

This paper reports on initial results from the first device tested of a “second generation” Pt-SiC Schottky diode hydrogen gas sensor that: 1) resides on the top of atomically flat 4H-SiC webbed cantilevers, 2) has integrated heater resistor, and 3) is bonded and packaged. With proper selection of heater resistor and sensor diode biases, rapid detection of H2 down to concentrations of 20 ppm was achieved. A stable sensor current gain of 125 ± 11 standard deviation was demonstrated during 250 hours of cyclic test exposures to 0.5% H2 and N2/air.


2015 ◽  
Vol 3 (3) ◽  
pp. 1317-1324 ◽  
Author(s):  
Yanrong Wang ◽  
Bin Liu ◽  
Songhua Xiao ◽  
Han Li ◽  
Lingling Wang ◽  
...  

A catalytically activated hydrogen sensor is obtained based on Pd decorated WO3 nanoplates constructed by a solvothermal method.


2008 ◽  
Vol 2008 ◽  
pp. 1-5 ◽  
Author(s):  
A. Z. Sadek ◽  
D. Buso ◽  
A. Martucci ◽  
P. Mulvaney ◽  
W. Wlodarski ◽  
...  

Amorphous titanium dioxide (TiO2) and gold (Au) dopedTiO2-based surface acoustic wave (SAW) sensors have been investigated as hydrogen gas detectors. The nanocrystal-dopedTiO2films were synthesized through a sol-gel route, mixing a Ti-butoxide-based solution with diluted colloidal gold nanoparticles. The films were deposited via spin coating onto64∘YXLiNbO3SAW transducers in a helium atmosphere. The SAW gas sensors were operated at various temperatures between 150 and310∘C. It was found that gold doping onTiO2increased the device sensitivity and reduced the optimum operating temperature.


Author(s):  
H. El Matbouly ◽  
F. Domingue ◽  
V. Palmisano ◽  
L. Boon-Brett

2019 ◽  
Vol 806 ◽  
pp. 1052-1059 ◽  
Author(s):  
Zhong Li ◽  
ZhengJun Yao ◽  
Azhar Ali Haidry ◽  
Tomas Plecenik ◽  
Branislav Grancic ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document