scholarly journals Molecular Dynamics Insight into the Lipid II Recognition by Type A Lantibiotics: Nisin, Epidermin, and Gallidermin

Micromachines ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1169
Author(s):  
Irina Panina ◽  
Amir Taldaev ◽  
Roman Efremov ◽  
Anton Chugunov

Lanthionine-containing peptides (lantibiotics) have been considered as pharmaceutical candidates for decades, although their clinical application has been restricted. Most lantibiotics kill bacteria via targeting and segregating of the cell wall precursor—membrane-inserted lipid II molecule—in some cases accompanied by pores formation. Nisin-like lantibiotics specifically bind to pyrophosphate (PPi) moiety of lipid II with their structurally similar N-terminal thioether rings A and B. Although possessing higher pore-forming capability, nisin, in some cases, is 10-fold less efficient in vivo as compared to related epidermin and gallidermin peptides, differing just in a few amino acid residues within their target-binding regions. Here, using molecular dynamics simulations, we investigated atomistic details of intermolecular interactions between the truncated analogues of these peptides (residues 1–12) and lipid II mimic (dimethyl pyrophosphate, DMPPi). The peptides adopt similar conformation upon DMPPi binding with backbone amide protons orienting into a single center capturing PPi moiety via simultaneous formation of up to seven hydrogen bonds. Epidermin and gallidermin adopt the complex-forming conformation twice as frequent as nisin does, enhancing the binding by the lysine 4 side chain. Introduction of the similar residue to nisin in silico improves the binding, providing ideas for further design of prototypic antibiotics.

2020 ◽  
Vol 16 (4) ◽  
pp. 451-459 ◽  
Author(s):  
Fortunatus C. Ezebuo ◽  
Ikemefuna C. Uzochukwu

Background: Sulfotransferase family comprises key enzymes involved in drug metabolism. Oxamniquine is a pro-drug converted into its active form by schistosomal sulfotransferase. The conformational dynamics of side-chain amino acid residues at the binding site of schistosomal sulfotransferase towards activation of oxamniquine has not received attention. Objective: The study investigated the conformational dynamics of binding site residues in free and oxamniquine bound schistosomal sulfotransferase systems and their contribution to the mechanism of oxamniquine activation by schistosomal sulfotransferase using molecular dynamics simulations and binding energy calculations. Methods: Schistosomal sulfotransferase was obtained from Protein Data Bank and both the free and oxamniquine bound forms were subjected to molecular dynamics simulations using GROMACS-4.5.5 after modeling it’s missing amino acid residues with SWISS-MODEL. Amino acid residues at its binding site for oxamniquine was determined and used for Principal Component Analysis and calculations of side-chain dihedrals. In addition, binding energy of the oxamniquine bound system was calculated using g_MMPBSA. Results: The results showed that binding site amino acid residues in free and oxamniquine bound sulfotransferase sampled different conformational space involving several rotameric states. Importantly, Phe45, Ile145 and Leu241 generated newly induced conformations, whereas Phe41 exhibited shift in equilibrium of its conformational distribution. In addition, the result showed binding energy of -130.091 ± 8.800 KJ/mol and Phe45 contributed -9.8576 KJ/mol. Conclusion: The results showed that schistosomal sulfotransferase binds oxamniquine by relying on hybrid mechanism of induced fit and conformational selection models. The findings offer new insight into sulfotransferase engineering and design of new drugs that target sulfotransferase.


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3614
Author(s):  
Abayomi S. Faponle ◽  
Anupom Roy ◽  
Ayodeji A. Adelegan ◽  
James W. Gauld

Cytochrome P450s (P450) are important enzymes in biology with useful biochemical reactions in, for instance, drug and xenobiotics metabolisms, biotechnology, and health. Recently, the crystal structure of a new member of the CYP116B family has been resolved. This enzyme is a cytochrome P450 (CYP116B46) from Tepidiphilus thermophilus (P450-TT) and has potential for the oxy-functionalization of organic molecules such as fatty acids, terpenes, steroids, and statins. However, it was thought that the opening to its hitherto identified substrate channel was too small to allow organic molecules to enter. To investigate this, we performed molecular dynamics simulations on the enzyme. The results suggest that the crystal structure is not relaxed, possibly due to crystal packing effects, and that its tunnel structure is constrained. In addition, the simulations revealed two key amino acid residues at the mouth of the channel; a glutamyl and an arginyl. The glutamyl’s side chain tightens and relaxes the opening to the channel in conjunction with the arginyl’s, though the latter’s side chain is less dramatically changed after the initial relaxation of its conformations. Additionally, it was observed that the effect of increased temperature did not considerably affect the dynamics of the enzyme fold, including the relative solvent accessibility of the amino acid residues that make up the substrate channel wall even as compared to the changes that occurred at room temperature. Interestingly, the substrate channel became distinguishable as a prominent tunnel that is likely to accommodate small- to medium-sized organic molecules for bioconversions. That is, P450-TT has the ability to pass appropriate organic substrates to its active site through its elaborate substrate channel, and notably, is able to control or gate any molecules at the opening to this channel.


1996 ◽  
Vol 425 ◽  
Author(s):  
G. M. Podojil ◽  
B. L. Farmer ◽  
T. J. Bunning ◽  
R. Pachter ◽  
W. W. Adams

AbstractMolecular dynamics simulations have been used to characterize the development and longevity of associations between cholesterol and biphenyl mesogens when attached to linear siloxane oligomers by flexible spacer groups. Single substituents, alternating substituents, and diblock and triblock arrangements of the substituents were considered. The backbone and spacer groups allow sufficient flexibility that long-lived associations between cholesterol mesogens form quite rapidly, as do more fluid associations between biphenyl and cholesterol mesogens. The study of the individual mesogen interactions and how these lead to larger scale aligned structures has provided insight into the nature of the liquid crystalline state in these materials.


2011 ◽  
Vol 10 (02) ◽  
pp. 245-259 ◽  
Author(s):  
SHANG-ZHI PU ◽  
WEN-HUA ZHANG ◽  
BI SHI

Molecular dynamics simulations were carried out to investigate the effect of pH on structure and stability of collagen-like peptide. All simulations were performed using the consistent valence force field (CVFF) molecular mechanical force field and isothermal-isobaric ensemble (NPT). The initial geometries of the collagen-like peptide were from an X-ray crystallographic structure. Some analyses from the molecular dynamics trajectories have been completed. The results show that the diameter of collagen-like peptide increases and the volume swells obviously in basic environment; however, the size of peptide changes slightly in acidic environment. The stability of collagen-like peptide decreases in acid and basic environment comparing to neutral environment based on root mean square deviation (RMSD). The number of hydrogen bond formed by peptide has a tendency to decrease in both acidic and basic environment. The average of intra-molecular H-bond is minimal under basic condition, and the average of inter-molecular H-bond between amino acid residues and water molecules is minimal under acid condition. The radial distribution function (RDF) shows that side-chain oxygen atoms are easier to form hydrogen bonds with water than side-chain nitrogen atoms. The interaction of various amino acid residues with water is position dependent. Distance between two triple helices increases markedly under highly basic condition, but changes slightly under highly acidic condition.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 5011-5011
Author(s):  
Jana Štikarová ◽  
Jiri Suttnar ◽  
Zofie Sovova ◽  
Eliska Ceznerova ◽  
Jaromir Novak ◽  
...  

Abstract Background Cardiovascular diseases are linked with oxidative stress which is the source of reactive oxidative and nitrative species, contributors of post-translational modification. Fibrinogen due to its high concentration in blood is considered as one of the most sought of targets of oxidative stress substances. Post-translational modifications of fibrinogen might influence its physiological function, thus affect hemostasis in the terms of fibrin nets forming and architecture or interaction with platelets. The aim of this study was to observe influence of in vivo fibrinogen modifications on formation of fibrin net and to identify amino acid residues prone to changes related to oxidative stress. Methods Plasma samples were collected from patients of The Military University Hospital Prague in the agreement with ethical committees of participating institutions and with informed consents from all subjects. Samples were divided into 4 groups: patients with acute coronary syndrome (A), patients with stroke (B), patients with thrombus localized in carotid vein (C) and control group (patients without coronary atherosclerosis; D). Fibrin net architecture was studied by scanning electron microscopy (Mira 3 LMH, Tescan Orsay Holding, a.s., Brno, Czech Republic). For identification of modified amino acids residue mass spectroscopy was used (Triple TOF 6600, Sciex). Molecular dynamics simulations of hydrated protein were performed in Gromacs software with Gromos force fields. Crystal structure 3GHG was used as a reference structure to which post-translational modifications were introduced manually in Yasara View. Results We found extensive both qualitative and quantitative changes in the structure of fibrinogen molecule in all groups of patients. Oxidative stress level differed among patient groups and between the control group. Different oxidative changes caused by in vivo modifications of fibrinogen affected quite distinctly the architecture of fibrin net. Modified amino acids were detected in all three fibrinogen chains. In gamma chain the localisation of modified amino acid residues correlated with the part of fibrinogen important for fibrin polymerisation. The impact of the most pronounced post-translational modifications on the secondary structure of fibrinogen was described by molecular dynamics simulations. Conclusions The results show that the degree of impairment of fibrinogen functions in the cardiovascular diseases is related to the level of oxidative stress. Characterization of oxidative fibrinogen modification and its precise meaning to the function of fibrinogen in hemostasis appears to be extremely helpful to better understanding of thrombotic/bleeding complications linked with various cardiovascular diseases. Acknowledgments This work was supported by the Ministry of Health, Czech Republic, no. 00023736, by the Academy of Sciences, Czech Republic no. P205/12/G118 and NV18-08-00149, by ERDF OPPK CZ.2.16/3.1.00/24001 and by the European Regional Development Fund and the state budget of the Czech Republic (project AIIHHP: CZ.02.1.01/0.0/0.0/16_025/0007428, OP RDE, Ministry of Education, Youth and Sports). Disclosures No relevant conflicts of interest to declare.


2018 ◽  
Author(s):  
Benjamin R. Jagger ◽  
Christoper T. Lee ◽  
Rommie Amaro

<p>The ranking of small molecule binders by their kinetic (kon and koff) and thermodynamic (delta G) properties can be a valuable metric for lead selection and optimization in a drug discovery campaign, as these quantities are often indicators of in vivo efficacy. Efficient and accurate predictions of these quantities can aid the in drug discovery effort, acting as a screening step. We have previously described a hybrid molecular dynamics, Brownian dynamics, and milestoning model, Simulation Enabled Estimation of Kinetic Rates (SEEKR), that can predict kon’s, koff’s, and G’s. Here we demonstrate the effectiveness of this approach for ranking a series of seven small molecule compounds for the model system, -cyclodextrin, based on predicted kon’s and koff’s. We compare our results using SEEKR to experimentally determined rates as well as rates calculated using long-timescale molecular dynamics simulations and show that SEEKR can effectively rank the compounds by koff and G with reduced computational cost. We also provide a discussion of convergence properties and sensitivities of calculations with SEEKR to establish “best practices” for its future use.</p>


2019 ◽  
Vol 25 (31) ◽  
pp. 3339-3349 ◽  
Author(s):  
Indrani Bera ◽  
Pavan V. Payghan

Background: Traditional drug discovery is a lengthy process which involves a huge amount of resources. Modern-day drug discovers various multidisciplinary approaches amongst which, computational ligand and structure-based drug designing methods contribute significantly. Structure-based drug designing techniques require the knowledge of structural information of drug target and drug-target complexes. Proper understanding of drug-target binding requires the flexibility of both ligand and receptor to be incorporated. Molecular docking refers to the static picture of the drug-target complex(es). Molecular dynamics, on the other hand, introduces flexibility to understand the drug binding process. Objective: The aim of the present study is to provide a systematic review on the usage of molecular dynamics simulations to aid the process of structure-based drug design. Method: This review discussed findings from various research articles and review papers on the use of molecular dynamics in drug discovery. All efforts highlight the practical grounds for which molecular dynamics simulations are used in drug designing program. In summary, various aspects of the use of molecular dynamics simulations that underline the basis of studying drug-target complexes were thoroughly explained. Results: This review is the result of reviewing more than a hundred papers. It summarizes various problems that use molecular dynamics simulations. Conclusion: The findings of this review highlight how molecular dynamics simulations have been successfully implemented to study the structure-function details of specific drug-target complexes. It also identifies the key areas such as stability of drug-target complexes, ligand binding kinetics and identification of allosteric sites which have been elucidated using molecular dynamics simulations.


RSC Advances ◽  
2021 ◽  
Vol 11 (15) ◽  
pp. 8718-8729
Author(s):  
Jixue Sun ◽  
Meijiang Liu ◽  
Na Yang

The origin of SARS-CoV-2 through structural analysis of receptor recognition was investigated by molecular dynamics simulations.


Sign in / Sign up

Export Citation Format

Share Document