scholarly journals Preparation, Characterization, and Acetylcholinesterase Inhibitory Ability of the Inclusion Complex of β-Cyclodextrin–Cedar (Juniperus phoenicea) Essential Oil

Micro ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 250-266
Author(s):  
Eleni Kavetsou ◽  
Ioanna Pitterou ◽  
Annita Katopodi ◽  
Georgia Petridou ◽  
Abdelaziz Adjali ◽  
...  

The aim of the present study was the encapsulation of cedar (Juniperus phoenicea) essential oil (CEO) of Greek origin in β-cyclodextrin (β-CD) through the formation of inclusion complexes (ICs) using the co-precipitation method with different β-CD-to-CEO weight ratios (90:10, 85:15, 80:20, 70:30 (w/w)). The encapsulation of CEO in β-CD through host–guest interactions was confirmed by Nuclear Magnetic Resonance (NMR) spectroscopy, FT-IR spectroscopy, Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis (TGA). The obtained ICs exhibited nanoscale size (315.9 nm to 769.6 nm),Polydispersity Index from 0.326 to 0.604 and satisfactory stability in suspension (−37.0 mV to −17.0 mV). The process yield was satisfactory, ranging between 65% and 78%, while the inclusion efficiency ranged from 10% to 27%. The in vitro release study conducted for the IC with the optimal characteristics (β-CD:CEO 80:20 (w/w)) exhibited a sustained release profile, with an initial burst effect in the first 5 h. The release profile could be well expressed by the Higuchi equation: Q = 18.893 t1/2 + 9.5919, R2 = 0.8491. The cedar EO presented significant acetylcholinesterase inhibition (IC50 37 μg/mL), which was prolonged by its encapsulation into the β-CD cavity.

Author(s):  
Prakash Goudanavar ◽  
Ankit Acharya ◽  
Vinay C.H

Administration of an antiviral drug, acyclovir via the oral route leads to low and variable bioavailability (15-30%). Therefore, this research work was aimed to enhance bioavailability of acyclovir by nanocrystallization technique. The drug nanocrystals were prepared by anti-solvent precipitation method in which different stabilizers were used. The formed nanocrystals are subjected to biopharmaceutical characterization including solubility, particle size and in-vitro release. SEM studies showed nano-crystals were crystalline nature with sharp peaks. The formulated drug nanocrystals were found to be in the range of 600-900nm and formulations NC7 and NC8 showed marked improvement in dissolution velocity when compared to pure drug, thus providing greater bioavailability. FT-IR and DSC studies revealed the absence of any chemical interaction between drug and polymers used. 


2016 ◽  
Vol 855 ◽  
pp. 47-53
Author(s):  
Ampa Jimtaisong ◽  
Nisakorn Saewan

Inclusion complex of β-cyclodextrin (β-CD) and Plai (Zingiber cassumunar) oil was prepared using a simple co-precipitation method at β-CD to Plai oil in different ratios. The inclusion complexes were characterized using Fourier transform-infrared spectroscopy (FT-IR) and differential scanning calorimetry (DSC). The FT-IR absorption bands of inclusion complex at 3600-3200 cm-1 were broader and shifted toward lower frequencies compared with that of pure β-CD (3359 cm-1). DSC of the inclusion complexes showed two endothermic peaks shifted to lower temperatures (90-100°C and 295-300°C) compared to that of β-CD. The different physicochemical characteristic could be an indication of an embedded guest molecule in the β-CD cavities in the inclusion complex preparation.


2021 ◽  
Vol 22 (21) ◽  
pp. 11353
Author(s):  
Mateusz Pawlaczyk ◽  
Grzegorz Schroeder

The following research aims at the synthesis of magnetite nanoparticles functionalized with triazine-based dendrons and the application of the obtained materials as effective sorptive materials dedicated to acidic bioactive compounds. The adopted synthetic approach involved: (1) the synthesis of nanosized Fe3O4 particles via classic co-precipitation method, (2) the introduction of amine groups on their surface leading to materials’ precursor, and (3) the final synthesis of branched triazine-based dendrons on the support surface by an iterative reaction between cyanuric chloride (CC) and piperazine (p) or diethylenetriamine (DETA) via nucleophilic substitution. The characterized materials were tested for their adsorptive properties towards folic acid, 18β–glycyrrhetinic acid, and vancomycin, showing high adsorption capacities varying in the ranges of 53.33–401.61, 75.82–223.71, and 68.17–132.45 mg g–1, respectively. The formed material–drug complexes were also characterized for the drug-delivery potential, performed as in vitro release studies at pH 2.0 and 7.4, which mimics the physiological conditions. The release profiles showed that the proposed materials are able to deliver up to 95.2% of the drugs within 48 h, which makes them efficient candidates for further biomedical applications.


2018 ◽  
Vol 10 (2) ◽  
pp. 52 ◽  
Author(s):  
Akshay Singha Roy ◽  
Sudipta Das ◽  
Arnab Samanta

Objective: The objective of the present study was to formulate and evaluate liposomes loaded with isoniazid.Methods: Liposome of isoniazid was made by thin layer film hydration method. L-α-phosphatidylcholine and cholesterol were used to make multiamellar vesicles. Six batches of liposomes were prepared based on the different weight ratio of L-α-phosphatidylcholine and cholesterol. Differential scanning calorimetry (DSC) study conducted to study in any incompatibility.Results: The prepared liposomes were evaluated by particle size analysis, entrapment efficiency, release study and stability study. Particle sizes were determined from the scanning electron microscopy (SEM) photographs. When particle frequencies were plotted against particle diameter in the histogram, it showed that F1 batch had a skewed distribution towards smaller liposomes while F6 shows a proper bell-shaped curve with a mean at 225 mm. The percentage entrapment efficiency was found to be 8.99 ± 0.15 to 4.19 ± 0.12 % respectively. From the release profile, it was seen that F1 batch was fastest and F6 was slowest to release the drug. The satisfactory batch F1 was packed in Eppendorf tube and stored at 4 °C temperature for one month. At the end of one month, the samples were analyzed for their physical properties, drug entrapment and in vitro release profile. The percentage release was found to be 96.5 ± 3.2 after 4 h.Conclusion: The F1 batch showed most promising results compared to other. No significant change was found during one month’s stability study of final batch (F1).


2017 ◽  
Vol 1 (2) ◽  
pp. 01-04
Author(s):  
Saritha Garrepalli

Prepared nanoparticles were characterized in terms of particle size, scanning electron microscope (SEM), fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC). In-vitro release studies were performed in phosphate buffer saline pH 7.4 at 37˚±0.5˚C for 1month. The mean particle size of obtained nanoparticles was 150-400 nm and was apparently spherical in shape, with smooth surface. DSC is done for the stability test for pure drug and sample. The thermogram of drug has not shifted for in the formulation compare to pure drug thermogram hence, the stability of formulation is not changed. FT-IR studies demonstrated that the drug was not changed in the formulation during the fabrication process.The encapsulation efficiency was about 48%. The Anastrozole-BSA nanoparticles exhibit a most interesting release profile with small initial burst followed by slower and controlled release.


Author(s):  
Mustafa R. Abdulbaqi

Objective: This study aimed to evaluate the application of nanotechnology in improving the solubility and biologic activity as the antibacterial and antifungal drug of metronidazole (MTZ).Methods: Nanoparticles of bismuth sulfide (Bi2S3) were used as the nanocarriers for metronidazole (MTZ) and they were synthesized by chemical co-precipitation method. Drug loading on Bi2S3 nanoparticles, lattice property alteration and average particles sizes were evaluated using fourier transform infrared (FTIR) spectroscopy, atomic force microscopy (AFM), and powder X-ray diffraction (PXRD). The evaluation of the release of MTZ from Bi2S3 nanoparticles was carried out using USP type II rotating paddle apparatus. The antimicrobial activity of MTZ before and after loading was carried out by disc diffusion method against two aerobic gram+ve and one aerobic gram–ve bacteria, in addition to two fungi.Results: This study showed successful loading process as well as particles size reduction of MTZ after loading on Bi2S3 nanoparticles. In vitro release study showed a significant* increase in solubility and dissolution of MTZ after loading on Bi2S3 nanoparticles. MTZ showed a significant* increase in antibacterial (against gram+ve aerobic staphylococcus aureus and bacillus subtilis) and antifungal (Candida glabrata and Candida tropicalis) activities after loading process.Conclusion: Nanotechnology was applied successfully to improve both, solubility and biologic activity of the model drug used, metronidazole (MTZ). 


2020 ◽  
Vol 30 (4) ◽  
Author(s):  
Mansour Binandeh ◽  
Farrokh Karimi ◽  
Sadegh Rostamnia

BACKGROUND: In recent years, extensive studies have been performed on magnetite nanoparticles (MNPs) and their applications, which have shown the current project to be one of the major applications by laboratory results.METHODS: The nanoparticles synthesized in this project were deposited by the co-precipitation method, which structure was identified by analyzers such as SEM, FT-IR, and EDX. The aim of this project is the adsorption and fixation of biomolecule (BSA (bovine serum albumin) protein on the surface of magnetic nanoparticles.RESULTS: The adsorption results by electrophoresis and spectrophotometric analyzers showed an absorption rate above 55% ie; 55% of the protein is fixed on the MNPs nanoparticles. This absorption is due to the high level of functionality of magnetic nanoparticles for adsorption of protein. The results of the EDX analysis also show the possible electrostatic bonding between the nanoparticles and the protein, this is derived from –OH with –NH2 groups of the nanobiocompound (MNPs /protein). After bonding, the two are easily separated.CONCLUSION: In this project, the Fe3O4 nanoparticles was synthesized and identified by SEM, FT-IR, and EDX analyzers and finally reacted with the BSA protein (for the absorption of protein on MNPs) under experimental conditions at a standard temperature of 25° C. The results showed that about 55% of the protein was fixed on magnetic nanoparticles.


Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7391
Author(s):  
Jennifer Hogenbom ◽  
Mouaz Istanbouli ◽  
Nicoletta Faraone

Cyclodextrin inclusion complexes have been successfully used to encapsulate essential oils, improving their physicochemical properties and pharmacological effects. Besides being well-known for its effects on cats and other felines, catnip (Nepeta cataria) essential oil demonstrates repellency against blood-feeding pests such as mosquitoes. This study evaluates the tick repellency of catnip oil alone and encapsulated in β-cyclodextrin, prepared using the co-precipitation method at a 1:1 molar ratio. The physicochemical properties of this inclusion complex were characterized using GC-FID for encapsulation efficiency and yield and SPME/GC-MS for volatile emission. Qualitative assessment of complex formation was done by UV-Vis, FT-IR, 1H NMR, and SEM analyses. Catnip oil at 5% (v/v) demonstrated significant tick repellency over time, being comparable to DEET as used in commercial products. The prepared [catnip: β-CD] inclusion complex exerted significant tick repellency at lower concentration of the essential oil (equivalent of 1% v/v). The inclusion complex showed that the release of the active ingredient was consistent after 6 h, which could improve the effective repellent duration. These results demonstrated the effective tick repellent activity of catnip essential oil and the successful synthesis of the inclusion complex, suggesting that β-CDs are promising carriers to improve catnip oil properties and to expand its use in repellent formulations for tick management.


Author(s):  
Mustafa R. Abdulbaqi ◽  
Furqan M. Abdulelah

Objective: The scope of this study is to evaluate the influence of metal nanoparticles application on pharmaceutical properties and biologic activity of antifungal drug, metronidazole (MTZ). Method: Metal nanoparticles used in the study, bismuth sulfide (Bi2S3) used as the nanocarriers for metronidazole (MTZ) and they were synthesized by chemical co-precipitation method. Drug loading on Bi2S3 nanoparticles, lattice property alteration and average particles sizes were evaluated using fourier transform infra-red (FTIR) spectroscopy, atomic force microscopy(AFM), and powder x-ray diffraction(PXRD). The evaluation of the release of MTZ from Bi2S3 nanoparticles was carried out using USP type II rotating puddle apparatus. The antimicrobial activity of MTZ before and after loading was carried out by disc diffusion method against two aerobic gram +ve and one aerobic gram –ve bacteria, in addition to two fungi. Result: This study showed successful loading process as well as particles size reduction of MTZ after loading on Bi2S3 nanoparticles. In vitro release study showed significant* increase in solubility and dissolution of MTZ after loading on Bi2S3 nanoparticles. MTZ showed significant* increase in antibacterial (against gram +ve aerobic staphylococcus aureus and bacillus subtilis) and antifungal (Candida glabrata and Candida tropicalis) activities after loading process. Conclusion: Nanotechnology was applied successfully to improve both, solubility and biologic activity of the model drug used, metronidazole (MTZ).


2013 ◽  
Vol 12 (1) ◽  
pp. 51-58 ◽  
Author(s):  
Anshu Sharma ◽  
CP Jain

The purpose of this study was to improve the solubility and dissolution rate of carvedilol by forming a complex with ?-cyclodextrin. Phase solubility diagrams revealed increase in solubility of the drug upon cyclodextrin addition, showing AN type curve. Complexation of carvedilol was carried out with ?-cyclodextrin by physical mixing, kneading and co-precipitation method. The prepared complexes and physical mixture were characterized by Fourier transform infra red spectroscopy, differential scanning calorimetry, powder X-ray diffractometry and inclusion efficiency. It was also observed that the complexes exhibit higher dissolution rates than the pure drug and physical mixture. Among all carvedilol-cyclodextrin complexes, inclusion complex (1:5) prepared by co-precipitation method showed better release. Dhaka Univ. J. Pharm. Sci. 12(1): 51-58, 2013 (June) DOI: http://dx.doi.org/10.3329/dujps.v12i1.16300


Sign in / Sign up

Export Citation Format

Share Document