scholarly journals New Antimicrobial Phenyl Alkenoic Acids Isolated from an Oil Palm Rhizosphere-Associated Actinomycete, Streptomyces palmae CMU-AB204T

2020 ◽  
Vol 8 (3) ◽  
pp. 350 ◽  
Author(s):  
Kanaporn Sujarit ◽  
Mihoko Mori ◽  
Kazuyuki Dobashi ◽  
Kazuro Shiomi ◽  
Wasu Pathom-aree ◽  
...  

Basal stem rot (BSR), or Ganoderma rot disease, is the most serious disease associated with the oil palm plant of Southeast Asian countries. A basidiomycetous fungus, Ganoderma boninense, is the causative microbe of this disease. To control BSR in oil palm plantations, biological control agents are gaining attention as a major alternative to chemical fungicides. In the course of searching for effective actinomycetes as potential biological control agents for BSR, Streptomyces palmae CMU-AB204T was isolated from oil palm rhizosphere soil collected on the campus of Chiang Mai University. The culture broth of this strain showed significant antimicrobial activities against several bacteria and phytopathogenic fungi including G. boninense. Antifungal and antibacterial compounds were isolated by antimicrobial activity-guided purification using chromatographic methods. Their structures were elucidated by spectroscopic techniques, including Nuclear Magnetic Resonance (NMR), Mass Spectrometry (MS), Ultraviolet (UV), and Infrared (IR) analyses. The current study isolated new phenyl alkenoic acids 1–6 and three known compounds, anguinomycin A (7), leptomycin A (8), and actinopyrone A (9) as antimicrobial agents. Compounds 1 and 2 displayed broad antifungal activity, though they did not show antibacterial activity. Compounds 3 and 4 revealed a strong antibacterial activity against both Gram-positive and Gram-negative bacteria including the phytopathogenic strain Xanthomonas campestris pv. oryzae. Compounds 7–9 displayed antifungal activity against Ganoderma. Thus, the antifungal compounds obtained in this study may play a role in protecting oil palm plants from Ganoderma infection with the strain S. palmae CMU-AB204T.

Author(s):  
CICI MATHEW ◽  
BINDU SARASWATI ◽  
NAND LAL ◽  
JOYAMMA VARKEY

Objective: The principal objective of the study was to synthesize and evaluate the biological activities of a novel class of 5-benzylidene substituted rhodanine derivatives as antimicrobial agents. Methods: All the synthesized compounds (D1-D10) were screened for their antimicrobial activities using microdilution methods as per the reported procedure. All compounds were evaluated as potential antimicrobial agents against gram-positive bacteria: Bacillus cereus, Staphylococcus aureus, gram negative bacteria: Escherichia coli Pseudomonas aeruginosa and Klebsiella pneumoniae Fungal cultures used in the study were Aspergillus niger, Candida albicans, Candida parapsilosis, Candida tropicalis and Candida glabrata. Results: Compound D6 showed good antifungal activity in the MIC range 16μg/ml against Candida tropicalis and Compound D10 showed good antifungal activity in the MIC range 16μg/ml against Candida glabrata. Compounds D2 and D5 showed good antibacterial activity at 32μg/ml. all the other compounds showed moderate antibacterial activity. Conclusion: Based on the above results, it can be concluded that the compounds may lead to the development of more potent antimicrobial drug candidates in the near future.


Materials ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 4383
Author(s):  
Barbara Lapinska ◽  
Aleksandra Szram ◽  
Beata Zarzycka ◽  
Janina Grzegorczyk ◽  
Louis Hardan ◽  
...  

Modifying the composition of dental restorative materials with antimicrobial agents might induce their antibacterial potential against cariogenic bacteria, e.g., S.mutans and L.acidophilus, as well as antifungal effect on C.albicans that are major oral pathogens. Essential oils (EOs) are widely known for antimicrobial activity and are successfully used in dental industry. The study aimed at evaluating antibacterial and antifungal activity of EOs and composite resin material (CR) modified with EO against oral pathogens. Ten EOs (i.e., anise, cinnamon, citronella, clove, geranium, lavender, limette, mint, rosemary thyme) were tested using agar diffusion method. Cinnamon and thyme EOs showed significantly highest antibacterial activity against S.mutans and L.acidophilus among all tested EOs. Anise and limette EOs showed no antibacterial activity against S.mutans. All tested EOs exhibited antifungal activity against C.albicans, whereas cinnamon EO showed significantly highest and limette EO significantly lowest activity. Next, 1, 2 or 5 µL of cinnamon EO was introduced into 2 g of CR and microbiologically tested. The modified CR showed higher antimicrobial activity in comparison to unmodified one. CR containing 2 µL of EO showed the best antimicrobial properties against S.mutans and C.albicans, while CR modified with 1 µL of EO showed the best antimicrobial properties against L.acidophilus.


2020 ◽  
Vol 13 (9) ◽  
pp. 229
Author(s):  
Volodymyr Horishny ◽  
Victor Kartsev ◽  
Vasyl Matiychuk ◽  
Athina Geronikaki ◽  
Petrou Anthi ◽  
...  

Herein we report the design, synthesis, computational, and experimental evaluation of the antimicrobial activity of fourteen new 3-amino-5-(indol-3-yl) methylene-4-oxo-2-thioxothiazolidine derivatives. The structures were designed, and their antimicrobial activity and toxicity were predicted in silico. All synthesized compounds exhibited antibacterial activity against eight Gram-positive and Gram-negative bacteria. Their activity exceeded those of ampicillin and (for the majority of compounds) streptomycin. The most sensitive bacterium was S. aureus (American Type Culture Collection ATCC 6538), while L. monocytogenes (NCTC 7973) was the most resistant. The best antibacterial activity was observed for compound 5d (Z)-N-(5-((1H-indol-3-yl)methylene)-4-oxo-2-thioxothiazolidin-3-yl)-4-hydroxybenzamide (Minimal inhibitory concentration, MIC at 37.9–113.8 μM, and Minimal bactericidal concentration MBC at 57.8–118.3 μM). Three most active compounds 5d, 5g, and 5k being evaluated against three resistant strains, Methicillin resistant Staphilococcus aureus (MRSA), P. aeruginosa, and E. coli, were more potent against MRSA than ampicillin (MIC at 248–372 μM, MBC at 372–1240 μM). At the same time, streptomycin (MIC at 43–172 μM, MBC at 86–344 μM) did not show bactericidal activity at all. The compound 5d was also more active than ampicillin towards resistant P. aeruginosa strain. Antifungal activity of all compounds exceeded those of the reference antifungal agents bifonazole (MIC at 480–640 μM, and MFC at 640–800 μM) and ketoconazole (MIC 285–475 μM and MFC 380–950 μM). The best activity was exhibited by compound 5g. The most sensitive fungal was T. viride (IAM 5061), while A. fumigatus (human isolate) was the most resistant. Low cytotoxicity against HEK-293 human embryonic kidney cell line and reasonable selectivity indices were shown for the most active compounds 5d, 5g, 5k, 7c using thiazolyl blue tetrazolium bromide MTT assay. The docking studies indicated a probable involvement of E. coli Mur B inhibition in the antibacterial action, while CYP51 inhibition is likely responsible for the antifungal activity of the tested compounds.


Molecules ◽  
2019 ◽  
Vol 24 (20) ◽  
pp. 3692 ◽  
Author(s):  
Jumina ◽  
Mutmainah ◽  
Purwono ◽  
Kurniawan ◽  
Syah

Microbial infections remains a serious challenge in food industries due to their resistance to some of the well-known antibacterial and antifungal agents. In this work, a novel monomyristoyl ester (fructosyl monomyristate) and two other derivatives (i.e., glucosyl and galactosyl monomyristates) were successfully synthesized from myristic acid and monosaccharides in two-step reactions. First, the myristic acid was converted to myristoyl chloride, and then the myristoyl chloride was reacted with fructose, glucose and galactose separately to produce the corresponding monosaccharide monomyristate derivatives. The structures of the synthesized products were confirmed by Fourier transform infrared (FTIR), proton and carbon nuclear magnetic resonance (1H- and 13C-NMR), and mass spectral (MS) data. The monomyristates esters were obtained in reaction yields of 45.80%–79.49%. The esters were then evaluated for their antimicrobial activity using the disc diffusion test. It was found that the esters exhibited a medium antibacterial activity against gram-positive bacteria; however, they showed a weak antibacterial activity against gram-negative bacteria. Amongst the esters, galactosyl myristate yielded the highest antibacterial activity against Salmonella typhimurium, Staphylococcus aureus and Bacillus subtilis, while glucosyl monomyristate exhibited the highest antibacterial activity only against Escherichia coli. Additionally, all products showed remarkable antifungal activity against Candida albicans. These findings demonstrate that monosaccharide monomyristate derivatives are promising for use as biocompatible antimicrobial agents in the future.


2011 ◽  
Vol 24 (12) ◽  
pp. 1540-1552 ◽  
Author(s):  
Houda Zeriouh ◽  
Diego Romero ◽  
Laura García-Gutiérrez ◽  
Francisco M. Cazorla ◽  
Antonio de Vicente ◽  
...  

The antibacterial potential of four strains of Bacillus subtilis, UMAF6614, UMAF6619, UMAF6639, and UMAF8561, previously selected on the basis of their antifungal activity and efficacy against cucurbit powdery mildew, was examined. Among these strains, UMAF6614 and UMAF6639 showed the highest antibacterial activity in vitro, especially against Xanthomonas campestris pv. cucurbitae and Pectobacterium carotovorum subsp. carotovorum. These strains produced the three families of lipopeptide antibiotics known in Bacillus spp.: surfactins, iturins, and fengycins. Using thin-layer chromatography analysis and direct bioautography, the antibacterial activity could be associated with iturin lipopeptides. This result was confirmed by mutagenesis analysis using lipopeptide-defective mutants. The antibacterial activity was practically abolished in iturin-deficient mutants, whereas the fengycin mutants retained certain inhibitory capabilities. Analyses by fluorescence and transmission electron microscopy revealed the cytotoxic effect of these compounds at the bacterial plasma membrane level. Finally, biological control assays on detached melon leaves demonstrated the ability of UMAF6614 and UMAF6639 to suppress bacterial leaf spot and soft rot; accordingly, the biocontrol activity was practically abolished in mutants deficient in iturin biosynthesis. Taken together, our results highlight the potential of these B. subtilis strains as biocontrol agents against fungal and bacterial diseases of cucurbits and the versatility of iturins as antifungal and antibacterial compounds.


2013 ◽  
Vol 53 (3) ◽  
pp. 268-274 ◽  
Author(s):  
Deane N Woruba ◽  
Michael J Priest ◽  
Charles F Dewhurst ◽  
Catherine W Gitau ◽  
Murray J Fletcher ◽  
...  

2011 ◽  
Vol 8 (1) ◽  
pp. 427-434
Author(s):  
Pramilla Sah ◽  
Neha Saraswat ◽  
Manu Manu

A new series of phthalyl substituted imidazolones (4a–g) and Schiff bases (5a–d) were synthesized from 2-methyl-(m-nitro-1,3-dioxo-1,3-dihydro-(2H)-isoindole-2-yl)-5-amino-1,3,4-thiadiazole (3a–b). Compounds (3a–b) were prepared by cyclisation of 2-(m-nitro-1,3-dioxo-1,3-dihydro-(2H)-isoindole-2-yl)methyl ethanoate (2) with thiosemicarbazide. 2-(m-nitro-1,3-dioxo-1,3-dihydro-(2H)-isoindole-2-yl)ethanoic acid (1) in presence of thionyl chloride and methanol gave the ester (2) while compound (1) was synthesized by aminolysis of phthalic anhydride with glycine. The compounds were characterized by spectral techniques of IR,1H NMR, Mass and elemental analysis. All the synthesized compounds (4a–g) and (5a–d) were screened for their antibacterial activity against the pathogenic strainsE. coli, P. aureus, C. freundiiwhile antifungal activity was evaluated againstA. niger, A. flavus, Penicillium sp. and C. albicans.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Gauri D. Bajju ◽  
Sunil Kumar Anand ◽  
Gita Devi

A series of 5,10,15,20-tetraphenylporphinatozirconium(IV) acetylacetonatophenolates containing different phenols as axial ligands [Zr(TPP)(Y)(X)] (TPP = 5,10.15,20-tetraphenyl-21H, 23H-porphine; Y = acac; X = different phenolates) have been synthesized and characterized by various spectrochemical studies. The complexes were also screened for antimicrobial activities. Antifungal activity of some adducts has been carried out against the fungal strain Sclerotium rolfsii. Most of the complexes have shown good antibacterial activity.


2001 ◽  
Vol 8 (3) ◽  
pp. 159-164 ◽  
Author(s):  
S. B. Jagtap ◽  
N. N. Patil ◽  
B. P. Kapadnis ◽  
B. A. Kulkarni

Erbium(III) complexes of 2-hydroxy-l,4-naphthalenedione-1-oxime and its C-3 substituted derivatives are synthesized and characterized by elemental analysis, thermogravimetric analysis, infrared spectroscopy, magnetic susceptibility measurements 2-hydroxy-1,4-naphthalenedione-1-oxime derivatives are analysed using H1 and C13 NMR spectroscopy. The molecular composition of the synthesized complexes is found to be [ML3(H2O)2]. The antimicrobial activity of these complexes is determined by well diffusion method against the target microorganisms- Staphylococcus aureus, Xanthomonas campestris, Pseudomonas aeruginosa, Candida albicans and Aspergillus niger. The antimicrobial activities of 2- hydroxy-1,4-naphthalenedione-1-oximes and their complexes are compared. It is observed that 2-hydroxy-1,4-naphthalenedione-l-oximes exhibit higher antifungal activity as compared to antibacterial activity. These activities are reduced upon complexation of these oximes with Erbium.


2021 ◽  
Author(s):  
Tankam Rajeswari ◽  
Panga Siva Sankar ◽  
Kayathi Narendra Babu ◽  
Adivireddy Padmaja ◽  
Venkatapuram Padmavathi

Abstract A variety of thiophenylazolyl pyrrolylsulfamoyl acetamides were prepared by the reaction of azolylsulfamoyl acetate with pyrrolylamine in the presence of sodium methoxide in methanol under ultrasonication. Chloro, nitro and dinitro substituted thiophenylthiazolyl pyrrolylsulfamoyl acetamides (9d, 9e, 9f) and dinitro substituted thiophenylimidazolyl pyrrolylsulfamoyl acetamide (10f) exhibited potential antibacterial activity against B. subtilis. The compound 9f also displayed prominent antibacterial activity against S. aureus. The compounds 9f, chloro and nitro substituted thiophenylimidazolyl pyrrolylsulfamoyl acetamide (10d, 10e) and 10f exhibited prominent antifungal activity against A.niger.


Sign in / Sign up

Export Citation Format

Share Document