scholarly journals An Oral FMT Capsule as Efficient as an Enema for Microbiota Reconstruction Following Disruption by Antibiotics, as Assessed in an In Vitro Human Gut Model

2021 ◽  
Vol 9 (2) ◽  
pp. 358
Author(s):  
Cécile Verdier ◽  
Sylvain Denis ◽  
Cyrielle Gasc ◽  
Lilia Boucinha ◽  
Ophélie Uriot ◽  
...  

Fecal microbiota transplantation (FMT) is an innovative therapy already used in humans to treat Clostridioides difficile infections associated with massive use of antibiotics. Clinical studies are obviously the gold standard to evaluate FMT efficiency but remain limited by regulatory, ethics, and cost constraints. In the present study, an in vitro model of the human colon reproducing medically relevant perturbation of the colonic ecosystem by antibiotherapy was used to compare the efficiency of traditional FMT enema formulations and a new oral capsule in restoring gut microbiota composition and activity. Loss of microbial diversity, shift in bacterial populations, and sharp decrease in fermentation activities induced in vivo by antibiotherapy were efficiently reproduced in the in vitro model, while capturing inter-individual variability of gut microbiome. Oral capsule was as efficient as enema to decrease the number of disturbed days and bacterial load had no effect on enema performance. This study shows the relevance of human colon models as an alternative approach to in vivo assays during preclinical studies for evaluating FMT efficiency. The potential of this in vitro approach could be extended to FMT testing in the management of many digestive or extra-intestinal pathologies where gut microbial dysbiosis has been evidenced such as inflammatory bowel diseases, obesity or cancers.

2020 ◽  
Author(s):  
Verdier Cécile ◽  
Denis Sylvain ◽  
Gasc Cyrielle ◽  
Boucinha Lilia ◽  
Uriot Ophélie ◽  
...  

Abstract Background Fecal microbiota transfer (FMT) is an innovative treatment already successfully used in recurrent Clostridioides difficile infections. Researchers and clinicians are exploring its potential for treating other digestive or extra-intestinal pathologies where gut microbial dysbiosis has been evidenced, such as inflammatory bowel disease, obesity or cancers. Oral capsules were recently developed to address gaps of traditional routes of FMT such as enema or colonoscopy. Clinical studies are obviously the gold standard to evaluate FMT efficiency but remain limited by regulatory, ethics and cost constraints. The aim of the study was to use the in vitro human Artificial Colon ARCOL to compare the efficiency of two enema dosage (10 and 30 g) and a new oral caecum-release capsule in restoring gut microbiota composition and activity after treatment with ciprofloxacin, an antibiotic used in leukemia patients. Results By integrating the main physicochemical parameters of the human colon (pH, retention time, nutrient supply and anaerobiosis), ARCOL was shown to capture microbial diversity and inter-individual variability of stools from three healthy donors. Treatment with ciprofloxacin led to a state of marked dysbiosis with a sharp decrease in fermentation activities (production of gases and short chain fatty acids), a loss of microbial diversity and a shift in bacterial populations. All FMT treatments were able to speed-up the restoration of microbial profiles and functions, by decreasing the number of dysbiotic days from 12 to 7–8 depending on the FMT modes. Of note, the bacterial load showed no major influence on enema performance, and oral capsule was almost as efficient as enema even if the amount of administered bacteria was 100 times lower. Conclusions This study provides the first example of using an in vitro human colon model for evaluating autologous FMT efficiency and highlights the potential of oral capsule compared to a traditional enema formulation. This new mode of FMT administration combines efficiency with convenient and minimally invasive mode of administration. In accordance to 3R rules, gut models like ARCOL can be advantageously used to test FMT in preclinical phases as an alternative to in vivo assays.


Author(s):  
Susan Gallogly ◽  
Takeshi Fujisawa ◽  
John D. Hung ◽  
Mairi Brittan ◽  
Elizabeth M. Skinner ◽  
...  

Abstract Purpose Endothelial dysfunction is central to the pathogenesis of acute coronary syndrome. The study of diseased endothelium is very challenging due to inherent difficulties in isolating endothelial cells from the coronary vascular bed. We sought to isolate and characterise coronary endothelial cells from patients undergoing thrombectomy for myocardial infarction to develop a patient-specific in vitro model of endothelial dysfunction. Methods In a prospective cohort study, 49 patients underwent percutaneous coronary intervention with thrombus aspiration. Specimens were cultured, and coronary endothelial outgrowth (CEO) cells were isolated. CEO cells, endothelial cells isolated from peripheral blood, explanted coronary arteries, and umbilical veins were phenotyped and assessed functionally in vitro and in vivo. Results CEO cells were obtained from 27/37 (73%) atherothrombotic specimens and gave rise to cells with cobblestone morphology expressing CD146 (94 ± 6%), CD31 (87 ± 14%), and von Willebrand factor (100 ± 1%). Proliferation of CEO cells was impaired compared to both coronary artery and umbilical vein endothelial cells (population doubling time, 2.5 ± 1.0 versus 1.6 ± 0.3 and 1.2 ± 0.3 days, respectively). Cell migration was also reduced compared to umbilical vein endothelial cells (29 ± 20% versus 85±19%). Importantly, unlike control endothelial cells, dysfunctional CEO cells did not incorporate into new vessels or promote angiogenesis in vivo. Conclusions CEO cells can be reliably isolated and cultured from thrombectomy specimens in patients with acute coronary syndrome. Compared to controls, patient-derived coronary endothelial cells had impaired capacity to proliferate, migrate, and contribute to angiogenesis. CEO cells could be used to identify novel therapeutic targets to enhance endothelial function and prevent acute coronary syndromes.


2021 ◽  
Vol 22 (6) ◽  
pp. 2925
Author(s):  
Victor Häussling ◽  
Romina H Aspera-Werz ◽  
Helen Rinderknecht ◽  
Fabian Springer ◽  
Christian Arnscheidt ◽  
...  

A large British study, with almost 3000 patients, identified diabetes as main risk factor for delayed and nonunion fracture healing, the treatment of which causes large costs for the health system. In the past years, much progress has been made to treat common complications in diabetics. However, there is still a lack of advanced strategies to treat diabetic bone diseases. To develop such therapeutic strategies, mechanisms leading to massive bone alterations in diabetics have to be well understood. We herein describe an in vitro model displaying bone metabolism frequently observed in diabetics. The model is based on osteoblastic SaOS-2 cells, which in direct coculture, stimulate THP-1 cells to form osteoclasts. While in conventional 2D cocultures formation of mineralized matrix is decreased under pre-/diabetic conditions, formation of mineralized matrix is increased in 3D cocultures. Furthermore, we demonstrate a matrix stability of the 3D carrier that is decreased under pre-/diabetic conditions, resembling the in vivo situation in type 2 diabetics. In summary, our results show that a 3D environment is required in this in vitro model to mimic alterations in bone metabolism characteristic for pre-/diabetes. The ability to measure both osteoblast and osteoclast function, and their effect on mineralization and stability of the 3D carrier offers the possibility to use this model also for other purposes, e.g., drug screenings.


2007 ◽  
Vol 88 (11) ◽  
pp. 2977-2984 ◽  
Author(s):  
Don Stoltz ◽  
Renée Lapointe ◽  
Andrea Makkay ◽  
Michel Cusson

Unlike most viruses, the mature ichnovirus particle possesses two unit membrane envelopes. Following loss of the outer membrane in vivo, nucleocapsids are believed to gain entry into the cytosol via a membrane fusion event involving the inner membrane and the plasma membrane of susceptible host cells; accordingly, experimentally induced damage to the outer membrane might be expected to increase infectivity. Here, in an attempt to develop an in vitro model system for studying ichnovirus infection, we show that digitonin-induced disruption of the virion outer membrane not only increases infectivity, but also uncovers an activity not previously associated with any polydnavirus: fusion from without.


Neurosurgery ◽  
1985 ◽  
Vol 17 (6) ◽  
pp. 883-890 ◽  
Author(s):  
Andrew H. Kaye ◽  
George Morstyn ◽  
Robert G. Ashcroft

2005 ◽  
Vol 288 (3) ◽  
pp. L536-L545 ◽  
Author(s):  
Jackeline Agorreta ◽  
Javier J. Zulueta ◽  
Luis M. Montuenga ◽  
Mercedes Garayoa

Adrenomedullin (ADM) is upregulated independently by hypoxia and LPS, two key factors in the pathogenesis of acute lung injury (ALI). This study evaluates the expression of ADM in ALI using experimental models combining both stimuli: an in vivo model of rats treated with LPS and acute normobaric hypoxia (9% O2) and an in vitro model of rat lung cell lines cultured with LPS and exposed to hypoxia (1% O2). ADM expression was analyzed by in situ hybridization, Northern blot, Western blot, and RIA analyses. In the rat lung, combination of hypoxia and LPS treatments overcomes ADM induction occurring after each treatment alone. With in situ techniques, the synergistic effect of both stimuli mainly correlates with ADM expression in inflammatory cells within blood vessels and, to a lesser extent, to cells in the lung parenchyma and bronchiolar epithelial cells. In the in vitro model, hypoxia and hypoxia + LPS treatments caused a similar strong induction of ADM expression and secretion in epithelial and endothelial cell lines. In alveolar macrophages, however, LPS-induced ADM expression and secretion were further increased by the concomitant exposure to hypoxia, thus paralleling the in vivo response. In conclusion, ADM expression is highly induced in a variety of key lung cell types in this rat model of ALI by combination of hypoxia and LPS, suggesting an essential role for this mediator in this syndrome.


Sign in / Sign up

Export Citation Format

Share Document