scholarly journals Plant Holobiont Theory: The Phytomicrobiome Plays a Central Role in Evolution and Success

2021 ◽  
Vol 9 (4) ◽  
pp. 675
Author(s):  
Dongmei Lyu ◽  
Jonathan Zajonc ◽  
Antoine Pagé ◽  
Cailun A. S. Tanney ◽  
Ateeq Shah ◽  
...  

Under natural conditions, plants are always associated with a well-orchestrated community of microbes—the phytomicrobiome. The nature and degree of microbial effect on the plant host can be positive, neutral, or negative, and depends largely on the environment. The phytomicrobiome is integral for plant growth and function; microbes play a key role in plant nutrient acquisition, biotic and abiotic stress management, physiology regulation through microbe-to-plant signals, and growth regulation via the production of phytohormones. Relationships between the plant and phytomicrobiome members vary in intimacy, ranging from casual associations between roots and the rhizosphere microbial community, to endophytes that live between plant cells, to the endosymbiosis of microbes by the plant cell resulting in mitochondria and chloroplasts. If we consider these key organelles to also be members of the phytomicrobiome, how do we distinguish between the two? If we accept the mitochondria and chloroplasts as both members of the phytomicrobiome and the plant (entrained microbes), the influence of microbes on the evolution of plants becomes so profound that without microbes, the concept of the “plant” is not viable. This paper argues that the holobiont concept should take greater precedence in the plant sciences when referring to a host and its associated microbial community. The inclusivity of this concept accounts for the ambiguous nature of the entrained microbes and the wide range of functions played by the phytomicrobiome in plant holobiont homeostasis.

2021 ◽  
Vol 9 (5) ◽  
pp. 1036
Author(s):  
Dongmei Lyu ◽  
Levini A. Msimbira ◽  
Mahtab Nazari ◽  
Mohammed Antar ◽  
Antoine Pagé ◽  
...  

Terrestrial plants evolution occurred in the presence of microbes, the phytomicrobiome. The rhizosphere microbial community is the most abundant and diverse subset of the phytomicrobiome and can include both beneficial and parasitic/pathogenic microbes. Prokaryotes of the phytomicrobiome have evolved relationships with plants that range from non-dependent interactions to dependent endosymbionts. The most extreme endosymbiotic examples are the chloroplasts and mitochondria, which have become organelles and integral parts of the plant, leading to some similarity in DNA sequence between plant tissues and cyanobacteria, the prokaryotic symbiont of ancestral plants. Microbes were associated with the precursors of land plants, green algae, and helped algae transition from aquatic to terrestrial environments. In the terrestrial setting the phytomicrobiome contributes to plant growth and development by (1) establishing symbiotic relationships between plant growth-promoting microbes, including rhizobacteria and mycorrhizal fungi, (2) conferring biotic stress resistance by producing antibiotic compounds, and (3) secreting microbe-to-plant signal compounds, such as phytohormones or their analogues, that regulate aspects of plant physiology, including stress resistance. As plants have evolved, they recruited microbes to assist in the adaptation to available growing environments. Microbes serve themselves by promoting plant growth, which in turn provides microbes with nutrition (root exudates, a source of reduced carbon) and a desirable habitat (the rhizosphere or within plant tissues). The outcome of this coevolution is the diverse and metabolically rich microbial community that now exists in the rhizosphere of terrestrial plants. The holobiont, the unit made up of the phytomicrobiome and the plant host, results from this wide range of coevolved relationships. We are just beginning to appreciate the many ways in which this complex and subtle coevolution acts in agricultural systems.


2018 ◽  
Vol 15 (142) ◽  
pp. 20180206 ◽  
Author(s):  
Madeleine Seale ◽  
Cathal Cummins ◽  
Ignazio Maria Viola ◽  
Enrico Mastropaolo ◽  
Naomi Nakayama

Hair-like structures are prevalent throughout biology and frequently act to sense or alter interactions with an organism's environment. The overall shape of a hair is simple: a long, filamentous object that protrudes from the surface of an organism. This basic design, however, can confer a wide range of functions, owing largely to the flexibility and large surface area that it usually possesses. From this simple structural basis, small changes in geometry, such as diameter, curvature and inter-hair spacing, can have considerable effects on mechanical properties, allowing functions such as mechanosensing, attachment, movement and protection. Here, we explore how passive features of hair-like structures, both individually and within arrays, enable diverse functions across biology. Understanding the relationships between form and function can provide biologists with an appreciation for the constraints and possibilities on hair-like structures. Additionally, such structures have already been used in biomimetic engineering with applications in sensing, water capture and adhesion. By examining hairs as a functional mechanical unit, geometry and arrangement can be rationally designed to generate new engineering devices and ideas.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Victor Chaban

Clinical studies suggest the comorbidity of functional pain syndromes such as irritable bowel syndrome, painful bladder syndrome, chronic pelvic pain, and somatoform disorders approaches 40% to 60%. The incidence of episodic or persistent visceral pain associated with these “functional” disorders is two to three times higher in women than in men. One of the possible explanations for this phenomenon is estrogen modulation of viscerovisceral cross-sensitization. While a central site of this modulation has been shown previously, our studies suggest a peripheral site, the dorsal root ganglion (DRG). Estrogens have remarkably wide range of functions including modulation of voltage-gated calcium channels (VGCCs) and purinoreceptors (P2Xs). Significantly, inflammation dramatically alters purinoception by causing a several fold increase in ATP-activated current, alters the voltage dependence of P2X receptors, and enhances the expression of P2X receptors increasing neuronal hypersensitivity. Gonadal hormones are thought as indispensable cornerstones of the normal development and function, but it appears that no body region, no neuronal circuit, and virtually no cell is unaffected by them. Thus, increasing awareness toward estrogens appears to be obligatory.


2021 ◽  
Vol 8 (3) ◽  
pp. 01-04
Author(s):  
Modhi Alhussinan

The limbic system forms a crucial part of the human brain. It is a network of structures that set beneath temporal lobe and on both sides of thalamus. It has a wide range of functions which mainly involve in our behavioral and emotional responses. Therefore, any disruption to the system may lead to devastating neurological conditions. This essay will explore the structure of the limbic system, its functional organization utilizing neurological diseases or damage to demonstrate the association between that specific affected brain region and function.


2016 ◽  
pp. 126-129
Author(s):  
M. Makarenko ◽  
◽  
D. Hovsyeyev ◽  
L. Sydoryk ◽  
◽  
...  

Different kinds of physiological stress cause mass changes in the cells, including the changes in the structure and function of the protein complexes and in separate molecules. The protein functions is determined by its folding (the spatial conclusion), which depends on the functioning of proteins of thermal shock- molecular chaperons (HSPs) or depends on the stress proteins, that are high-conservative; specialized proteins that are responsible for the correct proteinaceous folding. The family of the molecular chaperones/ chaperonins/ Hsp60 has a special place due to the its unique properties of activating the signaling cascades through the system of Toll-like receptors; it also stimulates the cells to produce anti- inflammatory cytokines, defensins, molecules of cell adhesion and the molecules of MHC; it functions as the intercellular signaling molecule. The pathological role of Hsp60 is established in a wide range of illnesses, from diabetes to atherosclerosis, where Hsp60 takes part in the regulation of both apoptosis and the autoimmune processes. The presence of the HSPs was found in different tissues that are related to the reproductive system. Key words: molecular chaperons (HSPs), Toll-like receptors, reproductive function, natural auto antibody.


2012 ◽  
Vol 6 (1-3) ◽  
pp. 243-259 ◽  
Author(s):  
Yohan Yoo

This article demonstrates the need for the iconic status and function of Buddhist scripture to receive more attention by illuminating how lay Korean Buddhists try to appropriate the power of sutras. The oral and aural aspects of scripture, explained by Wilfred Cantwell Smith, provide only a limited understanding of the characteristics of scripture. It should be noted that, before modern times, most lay people, not only in Buddhist cultures but also in Christian and other traditions, neither had the chance to recite scriptures nor to listen to their recitations regularly. Several clear examples demonstrate contemporary Korean Buddhists’ acceptance of the iconic status of sutras and their attempt to appropriate the power and status of those sacred texts. In contemporary Korea, lay Buddhists try to claim the power of scriptures in their daily lives by repeating and possessing them. Twenty-first century lay believers who cannot read or recite in a traditional style have found new methods of repetition, such as internet programs for copying sacred texts and for playing recordings of their recitations. In addition, many Korean Buddhists consider the act of having sutras in one’s possession to be an effective way of accessing the sacred status and power of these texts. Hence, various ways of possessing them have been developed in a wide range of products, from fancy gilded sutras to sneakers embroidered with mantras.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 522c-522
Author(s):  
Anuradha Tatineni ◽  
Sonja L. Maki ◽  
Nihal C. Rajapakse

Interest in the use of non- (or less) chemical methods to reduce the height of ornamental crops has increased tremendously. Manipulation of greenhouse light quality is one alternative for plant growth regulation. We have shown that eliminating far-red light from the greenhouse environment with liquid CuSO4 spectral filters is effective in reducing the height of a wide range of plants though plant carbohydrate status is also altered under CuSO4 filter. In previous studies, application of GA3 reversed both the reduction of plant height and carbohydrate status of CuSO4 spectral filter grown plants. It has been proposed that GAs enhance the activity of the enzyme sucrose phosphate synthase to regulate carbohydrate levels. In the present study the role of exogenously applied GA19, GA1, and GA3 in overcoming the reduction of plant height and carbohydrate levels was investigated. Chrysanthemum plants were treated weekly for 4 weeks with saturating doses of GA19, GA1 and GA3 (25 μg) or the growth retardants paclobutrazol and prohexadione. GA1 was also applied with paclobutrazol and prohexadione to assess whether response to GAs is altered under CuSO4 filter. GA1 and GA3 promoted growth similarly under control or CuSO4 filter. GA19 was least effective in promoting growth under CuSO4 filter. In summary, these results suggest that gibberellin physiology is altered under spectral filters with the conversion of GA19 a possible point of regulation. The correlation between the carbohydrate status and the growth of the plants will be discussed.


2018 ◽  
Vol 17 (5) ◽  
pp. 325-337 ◽  
Author(s):  
Hojjat Borna ◽  
Kasim Assadoulahei ◽  
Gholamhossein Riazi ◽  
Asghar Beigi Harchegani ◽  
Alireza Shahriary

Background & Objective: Neurodegenrative diseases are among the most widespread lifethreatening disorders around the world in elderly ages. The common feature of a group of neurodegenerative disorders, called tauopathies, is an accumulation of microtubule associated protein tau inside the neurons. The exact mechanism underlying tauopathies is not well-understood but several factors such as traumatic brain injuries and genetics are considered as potential risk factors. Although tau protein is well-known for its key role in stabilizing and organization of axonal microtubule network, it bears a broad range of functions including DNA protection and participation in signaling pathways. Moreover, the flexible unfolded structure of tau facilitates modification of tau by a wide range of intracellular enzymes which in turn broadens tau function and interaction spectrum. The distinctive properties of tau protein concomitant with the crucial role of tau interaction partners in the progression of neurodegeneration suggest tau and its binding partners as potential drug targets for the treatment of neurodegenerative diseases. Conclusion: This review aims to give a detailed description of structure, functions and interactions of tau protein in order to provide insight into potential therapeutic targets for treatment of tauopathies.


Author(s):  
Erik Gray

Love begets poetry; poetry begets love. These two propositions have seemed evident to thinkers and poets across the Western literary tradition. Plato writes that “anyone that love touches instantly becomes a poet.” And even today, when poetry has largely disappeared from the mainstream of popular culture, it retains its romantic associations. But why should this be so—what are the connections between poetry and erotic love that lead us to associate them so strongly with one another? An examination of different theories of both love and poetry across the centuries reveals that the connection between them is not merely an accident of cultural history—the result of our having grown up hearing, or hearing about, love poetry—but something more intrinsic. Even as definitions of them have changed, the two phenomena have consistently been described in parallel terms. Love is characterized by paradox. Above all, it is both necessarily public, because interpersonal, and intensely private; hence it both requires expression and resists it. In poetry, especially lyric poetry, which features its own characteristic paradoxes and silences, love finds a natural outlet. This study considers both the theories and the love poems themselves, bringing together a wide range of examples from different eras in order to examine the major structures that love and poetry share. It does not aim to be a comprehensive history of Western love poetry, but an investigation into the meaning and function of recurrent tropes, forms, and images employed by poets to express and describe erotic love.


2021 ◽  
Vol 1 ◽  
pp. 3219-3228
Author(s):  
Koray Benli ◽  
Jonathan Luntz ◽  
Diann Brei ◽  
Wonhee Kim ◽  
Paul Alexander ◽  
...  

AbstractPneumatically activated systems enable myriad types of highly functional inflatables employing a wide range of architectural approaches affecting their form and function, making systematic conceptual design difficult. A new architectural class of pneumatically activated systems, constrained layer inflatable systems, consists of hierarchically architected flat layers of thin airtight bladders that are internally and/or externally constrained to generate a variety of functionalities. The highly hierarchical architectural structure of constrained layer inflatable systems coincides with the hierarchy of produced functions, providing an opportunity for the development of a functional architectural decomposition, capturing the inherent relationship between architectural and functional hierarchies. The basis of the approach is conveyed through the design of an example constrained layer inflatable system. This approach empowers the systematic understanding of the interrelated architectural and functional breakdown of constrained layer inflatable systems, enabling designers to iteratively analyze, synthesize, and re-synthesize the components of the system improving existing designs and exploring new concepts.


Sign in / Sign up

Export Citation Format

Share Document