scholarly journals Production of Enriched Sporidiobolus sp. Yeast Biomass Cultivated on Mixed Coffee Hydrolyzate and Fat/Oil Waste Materials

2021 ◽  
Vol 9 (9) ◽  
pp. 1848
Author(s):  
Martin Szotkowski ◽  
Jiří Holub ◽  
Samuel Šimanský ◽  
Klára Hubačová ◽  
Dagmar Hladká ◽  
...  

One of the most addressed topics today is the transfer from a linear model of economics to a model of circular economics. It is a discipline that seeks to eliminate waste produced by various industries. The food industry generates huge amounts of waste worldwide, particularly the coffee industry, and related industries produce millions of tons of waste a year. These wastes have potential utility in biotechnology, and in the production of energy, fuels, fertilizers and nutrients, using green techniques such as anaerobic digestion, co-digestion, composting, enzymatic action, and ultrasonic and hydrothermal carbonization. This work is focused on the biotechnological use of processed spent coffee grounds (SCG) and waste fat/oil materials by some Sporidiobolus sp. carotenogenic yeasts in the model of circular economics. The results show that selected yeast strains are able to grow on SCG hydrolysate and are resistant to antimicrobial compounds present in media. The most productive strain Sporidiobolus pararoseus CCY19-9-6 was chosen for bioreactor cultivation in media with a mixture of coffee lignocellulose fraction and some fat wastes. Sporidiobolus pararoseus CCY19-9-6 was able to produce more than 22 g/L of biomass in mixture of SCG hydrolysate and both coffee oil and frying oil. The combined waste substrates induced the production of lipidic metabolites, whereby the production of carotenoids exceeded 5 mg/g of dry biomass. On media with coffee oil, this strain produced high amounts of ubiquinone (8.265 ± 1.648 mg/g) and ergosterol (13.485 ± 1.275 mg/g). Overall, the results prove that a combination of waste substrates is a promising option for the production of carotenoid- and lipid-enriched yeast biomass.

2020 ◽  
Vol 15 (1) ◽  
pp. 787-796 ◽  
Author(s):  
Marek Kieliszek ◽  
Kamil Piwowarek ◽  
Anna M. Kot ◽  
Katarzyna Pobiega

AbstractCellular biomass of microorganisms can be effectively used in the treatment of waste from various branches of the agro-food industry. Urbanization processes and economic development, which have been intensifying in recent decades, lead to the degradation of the natural environment. In the first half of the 20th century, problems related to waste management were not as serious and challenging as they are today. The present situation forces the use of modern technologies and the creation of innovative solutions for environmental protection. Waste of industrial origin are difficult to recycle and require a high financial outlay, while the organic waste of animal and plant origins, such as potato wastewater, whey, lignin, and cellulose, is dominant. In this article, we describe the possibilities of using microorganisms for the utilization of various waste products. A solution to reduce the costs of waste disposal is the use of yeast biomass. Management of waste products using yeast biomass has made it possible to generate new metabolites, such as β-glucans, vitamins, carotenoids, and enzymes, which have a wide range of industrial applications. Exploration and discovery of new areas of applications of yeast, fungal, and bacteria cells can lead to an increase in their effective use in many fields of biotechnology.


Author(s):  
Lenka Blinová ◽  
Alica Bartošová ◽  
Maroš Sirotiak

Abstract The residue after brewing the spent coffee grounds is an oil-containing waste material having a potential of being used as biodiesel feedstock. Biodiesel production from the waste coffee grounds oil involves collection and transportation of coffee residue, drying, oil extraction, and finally production of biodiesel. Different methods of oil extraction with organic solvents under different conditions show significant differences in the extraction yields. In the manufacturing of biodiesel from coffee oil, the level of reaction completion strongly depends on the quality of the feedstock oil. This paper presents an overview of oil extraction and a method of biodiesel production from spent coffee grounds.


RSC Advances ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 2682-2692
Author(s):  
Yihao Leow ◽  
Pek Yin Michelle Yew ◽  
Pei Lin Chee ◽  
Xian Jun Loh ◽  
Dan Kai

Spent coffee grounds are mostly discarded as waste. Here we recycle them for chemical compounds and as composite material fillers. Our study evaluated the chemical composition of coffee oil extracts and mechanical properties of composites formed.


2019 ◽  
Vol 824 ◽  
pp. 87-93
Author(s):  
Nattawut Suaduang ◽  
Sukunya Ross ◽  
Gareth M. Ross ◽  
Supatra Pratumshat ◽  
Sararat Mahasaranon

The aim of this research was to prepare and characterize biocomposite films from poly(lactic acid) (PLA) with spent coffee grounds (SCG). PLA can be derived from renewable resources. The SCG component consists of cellulose, hemicellulose and coffee oil 10.98%. SCG can simultaneously act as plasticizer and filler in the composites that can enhance the mixing process. The PLA/SCG biocomposite films were processed by a twin-screw extruder and blow film extruder. They were prepared by using various SCG concentrations (0%, 5%, 7.5% and 10% of SCG). The Scanning Electron Microscopy (SEM) results showed that the PLA matrix with SCG was miscible and had the SCG was well good distributed. Elongation at break was increased, when the amount of SCG was increased, with the results of PLA and PLA/SCG 10% being 5.07% and 6.63% respectively, while hardness, brittleness and tensile strength decreased. UV-vis spectrophotometric measurement of PLA/SCG biocomposite films showed a considerable reduction in transmission of all UV wavelengths (UV-A, -B and -C) and visible light with increasing SCG content. Hence, in this research, SCG can be used as filler in PLA films in order to produce biodegradable films and developed as agricultural film products. The PLA/SCG biocomposite films have shown good properties and are environmentally friendly.


2014 ◽  
Vol 90 ◽  
pp. 307-315 ◽  
Author(s):  
Siniša Petrik ◽  
Stanislav Obruča ◽  
Pavla Benešová ◽  
Ivana Márová

2019 ◽  
Vol 48 (4) ◽  
pp. 114-120 ◽  
Author(s):  
Нгуен Тхи Минь Кхань ◽  
Nguyen Thi Minh Khanh ◽  
Нгуен Тхи Чанг ◽  
Nguyen Thi Trang ◽  
Ле Дык Мань ◽  
...  

The Food Industries Research Institute of Vietnam is one of the leading research institutes in the country, which study the use of microorganisms in food production. One of the main goals of the Institute is to collect and search for new strains for further research and production. Recently, the Institute has focused on products that use biomasses of microorganisms, such as zinc- and selenium-forified yeast biomass. The present research features new yeast strains for the production of high-zinc-containing preparations. The studies examined the properties of Saccharomyces cerevisiae A112 and its stability under laboratory conditions. The research was conducted at the Food Industries Research Institute of Vietnam. The Saccharomyces cerevisiae A112 was found to contain up to 12.88 mg of zinc per gram of dry biomass when 1 g/l sulfate salt was added to the medium. The results allowed for industrial use of zinc-enriched yeast biomass. The new strain is resistant to temperatures up to 35°C while the optimal growth temperature is 28–33°C.


2021 ◽  
Author(s):  
Enrique Terroba-Delicado ◽  
Stefano Fiori ◽  
Sergio Torres-Giner ◽  
Jaume Gomez-Caturla ◽  
Nestor Montanes ◽  
...  

Abstract This work puts the Circular Bioeconomy’s concept into action, originally valorizing residues from the beverage liquor coffee industry into reinforcing fillers for green composites of polylactide (PLA). The as-received spent coffee grains derived from liquor waste were first milled to obtain the so-called spent coffee grounds (SCGs), which were then incorporated at 20 wt.% into PLA by extrusion. With the aim of improving the compatibility between the biopolyester and the lignocellulosic particles, two oligomers of lactic acid (OLAs), namely OLA2 and OLA2mal, being the latter functionalized with maleic anhydride (MAH), were both added during the extrusion process at 10 wt.%. The resultant compounded pellets were finally shaped into pieces by injection molding for characterization. Results showed that, as opposite to most claims published in the literature of PLA composites based on lignocellulosic fillers derived from soluble coffee wastes, the incorporation of liquor waste derived SCGs increased the ductility of the pieces by nearly 280% due to their high coffee oil content. The incorporation of OLA2 and OLA2mal contributed to improve the impact strength of the pieces by approximately 6% and 12.6%, respectively. The higher performance of OLA2mal was ascribed to a reduction of crystallinity in the green composite due to the chemical interaction by the MAH groups. However, the incorporation of SCGs into PLA slighlty reduced the thermal stability and yielded a dark-to-brown color, whereas it also delayed the disintegration rate of the pieces in controlled compost soil. Therefore, the results attained herein open up novel opportunities for the development of green composites of PLA with higher ductility and toughness through the valorization of liquor coffee wastes.


2015 ◽  
Vol 46 (2) ◽  
pp. 167-175 ◽  
Author(s):  
Roberto Pérez-Torrado ◽  
Esther Gamero ◽  
Rocío Gómez-Pastor ◽  
Elena Garre ◽  
Agustín Aranda ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document