scholarly journals Soil Layers Matter: Vertical Stratification of Root-Associated Fungal Assemblages in Temperate Forests Reveals Differences in Habitat Colonization

2021 ◽  
Vol 9 (10) ◽  
pp. 2131
Author(s):  
Anis Mahmud Khokon ◽  
Dominik Schneider ◽  
Rolf Daniel ◽  
Andrea Polle

Ectomycorrhizal and saprotrophic fungi play pivotal roles in ecosystem functioning. Here, we studied the vertical differentiation of root-associated fungi (RAF) in temperate forests. We analysed RAF assemblages in the organic and mineral soil from 150 experimental forest plots across three biogeographic regions spanning a distance of about 800 km. Saprotrophic RAF showed the highest richness in organic and symbiotrophic RAF in mineral soil. Symbiotrophic RAF exhibited higher relative abundances than saprotrophic fungi in both soil layers. Beta-diversity of RAF was mainly due to turnover between organic and mineral soil and showed regional differences for symbiotrophic and saprotrophic fungi. Regional differences were also found for different phylogenetic levels, i.e., fungal orders and indicator species in the organic and mineral soil, supporting that habitat conditions strongly influence differentiation of RAF assemblages. Important exceptions were fungal orders that occurred irrespective of the habitat conditions in distinct soil layers across the biogeographic gradient: Russulales and Cantharellales (ectomycorrhizal fungi) were enriched in RAF assemblages in mineral soil, whereas saprotrophic Polyporales and Sordariales and ectomycorrhizal Boletales were enriched in RAF assemblages in the organic layer. These results underpin a phylogenetic signature for niche partitioning at the rank of fungal orders and suggest that RAF assembly entails two strategies encompassing flexible and territorial habitat colonization by different fungal taxa.

2011 ◽  
Vol 77 (24) ◽  
pp. 8523-8531 ◽  
Author(s):  
Lu-Min Vaario ◽  
Hannu Fritze ◽  
Peter Spetz ◽  
Jussi Heinonsalo ◽  
Peter Hanajík ◽  
...  

ABSTRACTFungal and actinobacterial communities were analyzed together with soil chemistry and enzyme activities in order to profile the microbial diversity associated with the economically important mushroomTricholoma matsutake. Samples of mycelium-soil aggregation (shiro) were collected from three experimental sites where sporocarps naturally formed. PCR was used to confirm the presence and absence of matsutake in soil samples. PCR-denaturing gradient gel electrophoresis (DGGE) fingerprinting and direct sequencing were used to identify fungi and actinobacteria in the mineral and organic soil layers separately. Soil enzyme activities and hemicellulotic carbohydrates were analyzed in a productive experimental site. Soil chemistry was investigated in both organic and mineral soil layers at all three experimental sites. Matsutake dominated in the shiro but also coexisted with a high diversity of fungi and actinobacteria.Tomentollopsissp. in the organic layer above the shiro andPilodermasp. in the shiro correlated positively with the presence ofT. matsutakein all experimental sites. AThermomonosporaceaebacterium andNocardiasp. correlated positively with the presence ofT. matsutake, andStreptomycessp. was a common cohabitant in the shiro, although these operational taxonomic units (OTUs) did not occur at all sites. Significantly higher enzyme activity levels were detected in shiro soil. These enzymes are involved in the mobilization of carbon from organic matter decomposition. Matsutake was not associated with a particular soil chemistry compared to that of nearby sites where the fungus does not occur. The presence of a significant hemicellulose pool and the enzymes to degrade it indicates the potential for obtaining carbon from the soil rather than tree roots.


1998 ◽  
Vol 78 (3) ◽  
pp. 477-479 ◽  
Author(s):  
C. J. Westman ◽  
S. Jauhiainen

Forest soil pH in southwest Finland was measured with identical sampling and analysing methods in 1970 and 1989. The acidity of the organic humus layer increased significantly as pH values measured on water and on salt suspensions decreased between the two sampling dates. For the mineral soil layers, no unambiguous trend was found. pH values measured on salt suspension tended to be unchanged or lower, while pH on water suspension in some soil layers were even higher in 1989 than in 1970. Key words: pH, repeated sampling


2011 ◽  
Vol 51 (No. 9) ◽  
pp. 416-422 ◽  
Author(s):  
S.P. Sah

This study aims to investigate the changes in isotope ratios in foliage and soils of the two spruce forests [Picea abies (L.) Karst.] differing greatly in their atmospheric N deposition and climatic conditions. As expected, both N concentrations and <sup>15</sup>N values in both needles and litter were found to be significantly higher in the Solling stand (N-saturated) compared to the Hyytial&auml; stand (N-poor). For the N-limited site (Hyytial&auml; plot), a typical vertical gradient of the soil <sup>15</sup>N-enrichment (both in organic and mineral soil) was observed. The N-saturated site (Solling) differs from the N-limited site (Hyytial&auml;) with respect to the <sup>15</sup>N abundance trend in organic layer. In the upper organic layer up to O-f horizon, i.e. mor layer (0&ndash;3.5 cm depth) of Solling plot, there is almost a trend of slight soil <sup>15</sup>N-depletion with increasing depth, and then there is a <sup>15</sup>N-enrichment from O-h horizon (humus layer) of organic layer to mineral soil horizons. This is explained by the presence of prominent NO<sub>3</sub><sup>&ndash;</sup> leaching at this plot


2020 ◽  
Vol 66 (6) ◽  
pp. 761-769
Author(s):  
Matt Busse ◽  
Ross Gerrard

Abstract We measured forest-floor accumulation in ponderosa pine forests of central Oregon and asked whether selected ecological functions of the organic layer were altered by thinning and repeated burning. Experimental treatments included three thinning methods applied in 1989 (stem only, whole tree, no thin—control) in factorial combination with prescribed burning (spring 1991 and repeated in 2002; no burn—control). Forest-floor depth and mass were measured every 4–6 years from 1991 to 2015. Without fire, there was little temporal change in depth or mass for thinned (270 trees ha−1) and control (560–615 trees ha−1) treatments, indicating balanced litterfall and decay rates across these stand densities. Each burn consumed 50–70 percent of the forest floor, yet unlike thinning, postfire accumulation rates were fairly rapid, with forest-floor depth matching preburn levels within 15–20 years. Few differences in forest-floor function (litter decay, carbon storage, physical barrier restricting plant emergence, erosion protection) resulted from thinning or burning after 25 years. An exception was the loss of approximately 300 kg N ha−1 because of repeated burning, or approximately 13 percent of the total site N. This study documents long-term forest-floor development and suggests that common silvicultural practices pose few risks to organic layer functions in these forests. Study Implications: Mechanical thinning and prescribed fire are among the most widespread management practices used to restore forests in the western US to healthy, firewise conditions. We evaluated their effects on the long-term development of litter and duff layers, which serve dual roles as essential components of soil health and as fuel for potential wildfire. Our study showed that thinning and burning provided effective fuel reduction and resulted in no adverse effects to soil quality in dry ponderosa pine forests of central Oregon. Repeated burning reduced the site carbon and nitrogen pools approximately 9–13 percent, which is small compared to C located in tree biomass and N in mineral soil. Litter accumulation after burning was rapid, and we recommend burning on at least a 15–20-year cycle to limit its build-up.


1977 ◽  
Vol 55 (18) ◽  
pp. 2408-2412 ◽  
Author(s):  
Janice M. Moore ◽  
Ross W. Wein

Seedling emergence from organic and mineral soil layers was measured for nine study sites at the Acadia Forest Experiment Station near Fredericton, New Brunswick. The number of viable seeds showed a decrease from deciduous-dominated forest, to conifer-dominated forest, to organic soil study sites. Viable seed number varied from 3400/m2 for a deciduous-dominated forest study site to zero for a bog study site. Most seeds germinated from the upper organic soil layers of all study sites and were predominantly Rubus strigosus Michx. After the germination experiment, ungerminated seeds, which showed no viability by the tetrazolium test, were separated from the soil. These seeds were almost entirely Betula spp. and seed numbers were as high as 4200–9400/m2 for a deciduous-dominated forest. The applicability of the results to differing types of postdisturbance revegetation is discussed.


2008 ◽  
Vol 24 (4) ◽  
pp. 397-406 ◽  
Author(s):  
Nathalie Soethe ◽  
Johannes Lehmann ◽  
Christof Engels

AbstractWe measured macronutrient concentrations in soils and leaves of trees, shrubs and herbs at 1900, 2400 and 3000 m in an Ecuadorian tropical montane forest. Foliar N, P, S and K concentrations in trees were highest at 1900 m (21.7, 2.2, 1.9 and 10.0 mg g−1). At 2400 and 3000 m, foliar concentrations of N, P, S and K were similar to nutrient concentrations in tropical trees with apparent nutrient deficiency, as presented in literature. Unlike foliar nutrient concentrations, the amounts of plant-available nutrients in mineral soil were not affected by altitude or increased significantly with increasing altitude. High C:N ratios (25:1 at 2400 m and 34:1 at 3000 m) and C:P ratios (605:1 at 2400 m and 620:1 at 3000 m) in the soil organic layer suggested slow mineralization of plant litter and thus, a low availability of N and P at high altitudes. Foliar N:P ratios were significantly higher at 2400 m (11.3:1) than at 3000 m (8.3:1), indicating that at high altitudes, N supply was more critical than P supply. In conclusion, the access of plants to several nutrients, most likely N, P, S and K, decreased markedly with increasing altitude in this tropical montane forest.


2020 ◽  
Author(s):  
Takahiko Yoshino ◽  
Shin'ya Katsura

&lt;p&gt;Rainfall-runoff processes in a headwater catchment have been typically explained by water flow in permeable soil layers (comprised of organic soil layers and mineral soil layers produced by weathering of bedrock) overlying less permeable layers (i.e., bedrock). In a catchment where mineral soils are characterized by clayey materials (e.g., mudstone, slate, and serpentine catchment), it is possible that mineral soil layers function substantially as less permeable layers because of a low permeability of clayey materials. However, roles of clay layers in rainfall-runoff processes in such a headwater catchment are not fully understood. In this study, we conducted detailed hydrological, hydrochemical, and thermal observations in a serpentinite headwater catchment (2.12 ha) in Hokkaido, Northern Japan, where mineral soil layers consisting of thick clay layers (thickness: approximately 1.5 m) produced by weathering of the serpentinite bedrock underlies organic soil layers (thickness: approximately 0.4 m). Saturated hydraulic conductivity (Ks) and water retention curve of these two layers were also measured in a laboratory. The observation results demonstrated that groundwater was formed perennially in the organic soil layers and clay layers. The groundwater level within the organic soil layers and specific discharge of the catchment showed rapid and flashy change in response to rainfall. In contrast, the groundwater level within the clay layers showed slow and small change. Temperature of the groundwater and stream water suggested that water from the depth of the organic soil layers contributed to streamflow. The electric conductivity (EC) of the groundwater in the clay layers was very high, ranging from 321 to 380 &amp;#181;S cm&amp;#713;&amp;#185;. On the other hand, the EC of soil water (unsaturated water stored in the organic soil layers) was relatively low, ranging from 98 to 214 &amp;#181;S cm&amp;#713;&amp;#185;. Hydrograph separation using EC showed that contribution of water emerging from the clay layers to the total streamflow ranged from 31 to 76% in low to high flow periods. Temporal variation in the total head, measured using tensiometers installed at four depths at the ridge of the catchment, indicated that in wet periods when the groundwater level in the organic soil layers was high, water flow from the organic soil layers to the clay layers occurred, whereas, in dry periods, water flow from the clay layers into the organic soil layers occurred. The laboratory measurements showed that the organic soil layers had high Ks (10&amp;#713;&amp;#178; cm s&amp;#713;&amp;#185;) and low water-holding capacity, whereas the clay layers had low Ks (10&amp;#713;&amp;#8308; cm s&amp;#713;&amp;#185;) and high water-holding capacity. It can be concluded from these results that clay layers play two roles: (1) forming perched groundwater table and lateral flow on the clay layers (the role of less permeable layers) and (2) supplying water into the organic soil layers in the dry periods (the role of water supplier).&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document