Roles of clay layers in rainfall-runoff processes in a serpentinite headwater catchment

Author(s):  
Takahiko Yoshino ◽  
Shin'ya Katsura

<p>Rainfall-runoff processes in a headwater catchment have been typically explained by water flow in permeable soil layers (comprised of organic soil layers and mineral soil layers produced by weathering of bedrock) overlying less permeable layers (i.e., bedrock). In a catchment where mineral soils are characterized by clayey materials (e.g., mudstone, slate, and serpentine catchment), it is possible that mineral soil layers function substantially as less permeable layers because of a low permeability of clayey materials. However, roles of clay layers in rainfall-runoff processes in such a headwater catchment are not fully understood. In this study, we conducted detailed hydrological, hydrochemical, and thermal observations in a serpentinite headwater catchment (2.12 ha) in Hokkaido, Northern Japan, where mineral soil layers consisting of thick clay layers (thickness: approximately 1.5 m) produced by weathering of the serpentinite bedrock underlies organic soil layers (thickness: approximately 0.4 m). Saturated hydraulic conductivity (Ks) and water retention curve of these two layers were also measured in a laboratory. The observation results demonstrated that groundwater was formed perennially in the organic soil layers and clay layers. The groundwater level within the organic soil layers and specific discharge of the catchment showed rapid and flashy change in response to rainfall. In contrast, the groundwater level within the clay layers showed slow and small change. Temperature of the groundwater and stream water suggested that water from the depth of the organic soil layers contributed to streamflow. The electric conductivity (EC) of the groundwater in the clay layers was very high, ranging from 321 to 380 µS cmˉ¹. On the other hand, the EC of soil water (unsaturated water stored in the organic soil layers) was relatively low, ranging from 98 to 214 µS cmˉ¹. Hydrograph separation using EC showed that contribution of water emerging from the clay layers to the total streamflow ranged from 31 to 76% in low to high flow periods. Temporal variation in the total head, measured using tensiometers installed at four depths at the ridge of the catchment, indicated that in wet periods when the groundwater level in the organic soil layers was high, water flow from the organic soil layers to the clay layers occurred, whereas, in dry periods, water flow from the clay layers into the organic soil layers occurred. The laboratory measurements showed that the organic soil layers had high Ks (10ˉ² cm sˉ¹) and low water-holding capacity, whereas the clay layers had low Ks (10ˉ⁴ cm sˉ¹) and high water-holding capacity. It can be concluded from these results that clay layers play two roles: (1) forming perched groundwater table and lateral flow on the clay layers (the role of less permeable layers) and (2) supplying water into the organic soil layers in the dry periods (the role of water supplier).</p>

Physiology ◽  
1987 ◽  
Vol 2 (1) ◽  
pp. 22-26
Author(s):  
JA Schafer

Fluid absorption in the proximal tubule can be driven by a small osmotic difference between the luminal and interstitial fluids because this leaky epithelium has a high water permeability. The osmotic difference is produced by solute absorption, which tends to dilute the luminal fluid and concentrate the interstitial fluid. However, important questions remain unanswered regarding the pathway for water flow and the role of hemodynamic and humoral factors.


1977 ◽  
Vol 55 (18) ◽  
pp. 2408-2412 ◽  
Author(s):  
Janice M. Moore ◽  
Ross W. Wein

Seedling emergence from organic and mineral soil layers was measured for nine study sites at the Acadia Forest Experiment Station near Fredericton, New Brunswick. The number of viable seeds showed a decrease from deciduous-dominated forest, to conifer-dominated forest, to organic soil study sites. Viable seed number varied from 3400/m2 for a deciduous-dominated forest study site to zero for a bog study site. Most seeds germinated from the upper organic soil layers of all study sites and were predominantly Rubus strigosus Michx. After the germination experiment, ungerminated seeds, which showed no viability by the tetrazolium test, were separated from the soil. These seeds were almost entirely Betula spp. and seed numbers were as high as 4200–9400/m2 for a deciduous-dominated forest. The applicability of the results to differing types of postdisturbance revegetation is discussed.


2019 ◽  
Author(s):  
Kristen Manies ◽  
Mark Waldrop ◽  
Jennifer Harden

Abstract. Boreal ecosystems comprise about one tenth of the world's land surface and contain over 20 % of the global soil carbon (C) stocks. Boreal soils are unique in that the mineral soil is covered by what can be quite thick layers of organic soil. These organic soil layers, or horizons, can differ in their state of decomposition, source vegetation, and disturbance history. These differences result in varying soil properties (bulk density, C content, and nitrogen (N) content) among soil horizons. Here we summarize these soil properties, as represented by over 3000 samples from Interior Alaska, and examine how soil drainage and stand age affect these attributes. The summary values presented here can be used to gap-fill large datasets when important soil properties were not measured, provide data to initialize process-based models, and validate model results. These data are available at https://doi.org/10.5066/P960N1F9 (Manies, 2019).


2010 ◽  
Vol 24 (19) ◽  
pp. 2771-2783 ◽  
Author(s):  
Sho Iwagami ◽  
Maki Tsujimura ◽  
Yuichi Onda ◽  
Jun Shimada ◽  
Tadashi Tanaka

1998 ◽  
Vol 78 (1) ◽  
pp. 93-104 ◽  
Author(s):  
T. J. Lynham ◽  
G. M. Wickware ◽  
J. A. Mason

In 1975 and 1976, an experimental burning program was conducted in an immature stand of boreal jack pine (Pinus banksiana Lamb.) growing on level, granitic outwash sands in northern Ontario. Nine 0.4-ha plots were burned under a range of fire weather conditions and sampling was conducted to examine the effect of fire on soil chemical changes and revegetation. Results indicated that depth of burn (DOB) affected both soil chemical changes and plant succession on these pine sites. Vaccinium angustifolium Ait., Oryzopsis spp,. Waldsteinia fragarioides (Michx.) Tratt, Salix spp. and Viola adunca Sm. increased in cover at two levels of DOB but the increase was greatest at the lower DOB and decreased to pre-burn levels after 10 yr. Comptonia peregrina (L.) Coult., Epilobium angustifolium L., Polytrichum commune Hedw. and Amelanchier sanguinea (Pursh) DC. were not found in the pre-burn surveys but appeared after burning. Vegetation cover for these species was always higher at the deeper DOB but decreased almost to zero after 10 yr. Other species such as Pleurozium schreberi (Brid.) Mitt., Linnaea borealis L., Corylus cornuta Marsh., Cladina rangiferina (L.) Nyl. and Aralia nudicaulis L. were eliminated from the site and did not recover even after 10 yr. Soil pH increased 0.3 to 1.0 pH units in the organic and mineral soil layers. The rate of increase in pH was always steeper at the higher DOB and pH returned to pre-burn levels in the mineral soil layers after 10 yr. Immediately after burning, exchangeable Ca in the mineral soil layers doubled but 10 yr later, Ca returned to pre-burn levels. Phosphorus and K increased in the mineral soil, leveled off and were still elevated after 10 yr. Total Kjeldahl N was reduced by 50% in the organic soil while N in all mineral soils increased, and was still increasing after 10 yr. Except for immediate post-fire increases in pH, Ca and N, soil chemical changes were small or they rebounded to pre-burn levels 10 yr after burning. Therefore it is unlikely that these changes were the cause of the plant cover changes that persisted to 10 yr. Key words: Soil nutrients, plant succession, fire, depth of burn, jack pine


2021 ◽  
Author(s):  
Antoine Pelletier ◽  
Vazken Andréassian

Abstract. The role of aquifers in the seasonal and multiyear dynamics of streamflow is undisputed: in many temperate catchments, aquifers store water during the wet periods and release it all year long, making a major contribution to low flows. The complexity of groundwater modelling has long prevented surface hydrological modellers from including groundwater level data, especially in lumped rainfall–runoff models. In this article, we investigate whether using groundwater level data in the daily GR6J model, through a composite calibration framework, can improve the performance of streamflow simulation. We tested the new calibration process on 107 French catchments. Our results show that these additional data are superfluous for streamflow simulation, since for catchments, model performance is not significantly improved. However, parameter stability is ameliorated and the model shows a surprising ability to simulate groundwater level with a satisfying performance, in a wide variety of hydrogeological and hydroclimatic contexts. Finally, we make several recommendations regarding the model calibration process to be used in a given situation.


1993 ◽  
Vol 264 (6) ◽  
pp. R1260-R1265 ◽  
Author(s):  
R. H. Parsons ◽  
V. McDevitt ◽  
V. Aggerwal ◽  
T. Le Blang ◽  
K. Manley ◽  
...  

This report examines the importance of bladder volume in regulating cutaneous water uptake (Jv, cm3.cm-2.s-1 x 10(-7)) across the ventral pelvic patch and examines the role of angiotensin II (ANG II) and circulation as the regulatory mechanism. Jv in empty-bladder Bufo marinus (bladder volume 3.89 +/- 1.49%, n = 7) was 1,671 +/- 68 (n = 7). Injection of Ringer solution into the bladder (12.8 +/- 2.2%, n = 7) decreased Jv to 1,025 +/- 202 (n = 7). ANG II injected into toads with filled bladders increased Jv in a dose-dependent manner. At 5 micrograms/100 g toad Jv increased by 136 +/- 63 (n = 6), at 50 micrograms/100 g toad by 432 +/- 82 (n = 7), and at 200 micrograms/100 g toad by 620 +/- 142 (n = 5). Saralasin (200 micrograms/100 g toad) completely inhibited the response to ANG II (50 micrograms/100 g toad) and at 1 mg/100 g toad decreased Jv in empty-bladder toads. These experiments indicate that 1) bladder volume participates in the regulation of Jv in the ventral pelvic patch; 2) ANG II increases the Jv in toads with full bladders; 3) saralasin inhibits the high Jv in empty bladder toads; 4) the high Jv, associated with an empty bladder, requires an intact circulation to be maintained; 5) without an intact circulation, the high water flow associated with an empty bladder causes the Na+ content of the tissue in the ventral patch to be reduced; and 6) ANG II causes only a minimal increases in water permeability in the isolated pelvic patch skin.


Author(s):  
Shaun Blanchard

This book sheds further light on the nature of church reform and the roots of the Second Vatican Council (1962–65) through a study of eighteenth-century Catholic reformers who anticipated the Council. The most striking of these examples is the Synod of Pistoia (1786), the high-water mark of late Jansenism. Most of the reforms of the Synod were harshly condemned by Pope Pius VI in the bull Auctorem fidei (1794), and late Jansenism was totally discredited in the ultramontane nineteenth-century Church. Nevertheless, much of the Pistoian agenda—such as an exaltation of the role of bishops, an emphasis on infallibility as a gift to the entire Church, religious liberty, a simpler and more comprehensible liturgy that incorporates the vernacular, and the encouragement of lay Bible reading and Christocentric devotions—was officially promulgated at Vatican II. The career of Bishop Scipione de’ Ricci (1741–1810) and the famous Synod he convened are investigated in detail. The international reception (and rejection) of the Synod sheds light on why these reforms failed, and the criteria of Yves Congar are used to judge the Pistoian Synod as “true or false reform.” This book proves that the Synod was a “ghost” present at Vatican II. The council fathers struggled with, and ultimately enacted, many of the same ideas. This study complexifies the story of the roots of the Council and Pope Benedict XVI’s “hermeneutic of reform,” which seeks to interpret Vatican II as in “continuity and discontinuity on different levels” with past teaching and practice.


Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1283
Author(s):  
Vasileios Ziogas ◽  
Georgia Tanou ◽  
Giasemi Morianou ◽  
Nektarios Kourgialas

Among the various abiotic stresses, drought is the major factor limiting crop productivity worldwide. Citrus has been recognized as a fruit tree crop group of great importance to the global agricultural sector since there are 140 citrus-producing countries worldwide. The majority of citrus-producing areas are subjected to dry and hot summer weather, limited availability of water resources with parallel low-quality irrigation water due to increased salinity regimes. Citrus trees are generally classified as “salt-intolerant” with high water needs, especially during summer. Water scarcity negatively affects plant growth and impairs cell metabolism, affecting the overall tree growth and the quality of produced fruit. Key factors that overall attempt to sustain and withstand the negative effect of salinity and drought stress are the extensive use of rootstocks in citriculture as well as the appropriate agronomical and irrigation practices applied. This review paper emphasizes and summarizes the crucial role of the above factors in the sustainability of citriculture.


Water ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 1707
Author(s):  
Chulsang Yoo ◽  
Huy Phuong Doan ◽  
Changhyun Jun ◽  
Wooyoung Na

In this study, the time–area curve of an ellipse is analytically derived by considering flow velocities within both channel and hillslope. The Clark IUH is also derived analytically by solving the continuity equation with the input of the derived time–area curve to the linear reservoir. The derived Clark IUH is then evaluated by application to the Seolmacheon basin, a small mountainous basin in Korea. The findings in this study are summarized as follows. (1) The time–area curve of a basin can more realistically be derived by considering both the channel and hillslope velocities. The role of the hillslope velocity can also be easily confirmed by analyzing the derived time–area curve. (2) The analytically derived Clark IUH shows the relative roles of the hillslope velocity and the storage coefficient. Under the condition that the channel velocity remains unchanged, the hillslope velocity controls the runoff peak flow and the concentration time. On the other hand, the effect of the storage coefficient can be found in the runoff peak flow and peak time, as well as in the falling limb of the runoff hydrograph. These findings are also confirmed in the analysis of rainfall–runoff events of the Seolmacheon basin. (3) The effect of the hillslope velocity varies considerably depending on the rainfall events, which is also found to be mostly dependent upon the maximum rainfall intensity.


Sign in / Sign up

Export Citation Format

Share Document