scholarly journals Validation of the Decontamination of a Specialist Transport System for Patients with High Consequence Infectious Diseases

2021 ◽  
Vol 9 (12) ◽  
pp. 2575
Author(s):  
Claire Bailey ◽  
Catherine Makison-Booth ◽  
Jayne Farrant ◽  
Alan Beswick ◽  
John Chewins ◽  
...  

When transferring highly infective patients to specialist hospitals, safe systems of work minimise the risk to healthcare staff. The EpiShuttle is a patient transport system that was developed to fit into an air ambulance. A validated decontamination procedure is required before the system can be adopted in the UK. Hydrogen peroxide (H2O2) vapour fumigation may offer better penetration of the inaccessible parts than the liquid disinfectant wiping that is currently suggested. To validate this, an EpiShuttle was fumigated in a sealed test chamber. Commercial bacterial spore indicators (BIs), alongside organic liquid suspensions and dried surface samples of MS2 bacteriophage (a safe virus surrogate), were placed in and around the EpiShuttle, for the purpose of evaluation. The complete kill of all of the BIs in the five test runs demonstrated the efficacy of the fumigation cycle. The log reduction of the MS2 that was dried on the coupons ranged from 2.66 to 4.50, but the log reduction of the MS2 that was in the organic liquids only ranged from 0.07 to 1.90, confirming the results of previous work. Fumigation with H2O2 alone may offer insufficient inactivation of viruses in liquid droplets, therefore a combination of fumigation and disinfectant surface wiping was proposed. Initial fumigation reducing contamination with minimal intervention allows disinfectant wipe cleaning to be completed more safely, with a second fumigation step inactivating the residual pathogens.

2002 ◽  
Vol 17 (9) ◽  
pp. 2457-2464 ◽  
Author(s):  
Yafei Zhang ◽  
Mikka N.-Gamo ◽  
Kiyoharu Nakagawa ◽  
Toshihiro Ando

A simple and novel method was developed for efficient synthesis of aligned multiwalled carbon nanotubes (CNTs) in methanol and ethanol under normal pressure. The CNTs' alignment and structures were investigated using Raman scattering and x-ray diffraction spectroscopy. A unique kind of coupled CNT was synthesized in which one rotated to the left and one rotated to the right. Chains periodically bridged the coupled CNTs. The growth mechanism of the CNTs within organic liquid is proposed to be a catalytic process at the Fe film surface in a dynamic and thermal nonequilibrium condition in organic liquids.


1982 ◽  
Vol 104 (4) ◽  
pp. 750-757 ◽  
Author(s):  
C. T. Avedisian

A study of high-pressure bubble growth within liquid droplets heated to their limits of superheat is reported. Droplets of an organic liquid (n-octane) were heated in an immiscible nonvolatile field liquid (glycerine) until they began to boil. High-speed cine photography was used for recording the qualitative aspects of boiling intensity and for obtaining some basic bubble growth data which have not been previously reported. The intensity of droplet boiling was found to be strongly dependent on ambient pressure. At atmospheric pressure the droplets boiled in a comparatively violent manner. At higher pressures photographic evidence revealed a two-phase droplet configuration consisting of an expanding vapor bubble beneath which was suspended a pool of the vaporizing liquid. A qualitative theory for growth of the two-phase droplet was based on assuming that heat for vaporizing the volatile liquid was transferred across a thin thermal boundary layer surrounding the vapor bubble. Measured droplet radii were found to be in relatively good agreement with predicted radii.


2007 ◽  
Vol 73 (11) ◽  
pp. 3505-3510 ◽  
Author(s):  
Mark P. Buttner ◽  
Patricia Cruz ◽  
Linda D. Stetzenbach ◽  
Tracy Cronin

ABSTRACT This research was designed to evaluate surface sampling protocols for use with culture and quantitative PCR (QPCR) amplification assay for detection of the gram-negative bacterial biothreat simulant Erwinia herbicola on a variety of surface materials. Surfaces selected for evaluation were wood laminate, glass and computer monitor screens, metal file cabinets, plastic arena seats, nylon seat cushions, finished concrete flooring, and vinyl tile flooring. Laboratory and test chamber studies were performed to evaluate two sampling methods, a sponge and a macrofoam swab, for detection of E. herbicola on surface materials. In laboratory trials, seven materials were inoculated with a known concentration of E. herbicola cells and samples were collected from the surfaces of the materials to determine sampling efficiencies. Culture analysis was ineffective for assessing E. herbicola collection efficiency because very few culturable cells were obtained from surface samples. QPCR demonstrated that E. herbicola DNA was present in high concentrations on all of the surface samples, and sampling efficiencies ranged from 0.7 to 52.2%, depending on the sampling method and the surface material. The swab was generally more efficient than the sponge for collection of E. herbicola from surfaces. Test chamber trials were also performed in which E. herbicola was aerosolized into the chamber and allowed to settle onto test materials. Surface sampling results supported those obtained in laboratory trials. The results of this study demonstrate the capabilities of QPCR to enhance the detection and enumeration of biocontaminants on surface materials and provide information on the comparability of sampling methods.


Author(s):  
Yury Chernyak ◽  
Florence Henon

This chapter describes several aspects of the use of carbon dioxide as a solvent or cosolvent in coating applications. The primary impetus for using carbon dioxide for this purpose has been the alleviation of volatile emissions and liquid solvent wastes. However, the special physical properties of liquid and supercritical carbon dioxide may offer some processing advantages over conventional organic or aqueous solvents. Liquid carbon dioxide is quite compressible, and a reduction in temperature results not only in a reduction in the operating pressure, but also in a significant increase in the liquid density to values of approximately 0.9 g/cm3. At these high liquid densities, carbon dioxide exhibits improved solvent performance, but with much lower viscosities and interfacial tensions than aqueous or organic liquid solvents. Under supercritical conditions, carbon dioxide also exhibits high densities, low viscosities, and improved solvent power. Low viscosities and interfacial tensions tend to facilitate the transport of the solvents into any crevices or imperfections on the surface to be covered, and this might prove advantageous in the coating of patterned or etched surfaces. Since carbon dioxide dissolves and diffuses easily into many different polymers and organic liquids, it can also be used to reduce the viscosity of coating solutions. Whether in the liquid or the supercritical state, the temperature and pressure of the mixture can be used to control its physical properties in ways that are impossible to achieve with traditional solvents. These distinguishing features have raised the level of industrial interest in carbon dioxide as a solvent for coating applications, beyond those based solely on environmental concerns. In this chapter, we will discuss current applications and research on the use of CO2 as a solvent for coatings. The first section deals with spray coating from supercritical CO2. Subsequent sections deal with the use of liquid coatings, such as spin and free meniscus coatings, and impregnation coatings. Since the start of the 20th century (ca. 1907), atomization has been the basis for conventional spray coating applications (Muirhead, 1974). Typically, atomization is caused by high shear of the coating fluid in air, leading to droplet or particle formation.


2019 ◽  
Vol 55 (92) ◽  
pp. 13876-13879 ◽  
Author(s):  
Yihan Sun ◽  
Jinxia Huang ◽  
Zhiguang Guo

A facile protocol was developed for preparing a dual underliquid superlyophobic surface for the on-demand separation of immiscible organic liquids.


1970 ◽  
Vol 92 (4) ◽  
pp. 807-813 ◽  
Author(s):  
M. S. Plesset

Cavitation erosion rates in the organic liquids formamide, ethanol, acetone, and glycerol are compared with the rate in distilled water. As is to be expected, these non-ionizing liquids, which are chemically less reactive with metals than water, show lower damage rates. The cavitation damage rates have also been measured for solutions of these organic liquids in water and all these solutions show a monotonic decrease in going from pure water to the pure organic liquid except glycerol. The water-glycerol solutions go through a minimum damage rate for a solution with molecular ratio of glycerol to water of approximately 1 to 1. Solutions of ethanol in glycerol show a maximum in damage rate for a solution with molecular ratio, glycerol/ethanol, of about 2 to 1. Qualitative differences in the cavitation bubble cloud in the various liquids studied are indicated by short-exposure photographs.


2015 ◽  
Vol 36 (2) ◽  
pp. 194-200 ◽  
Author(s):  
Andrei Samarin ◽  
Felix P. Kuhn ◽  
Fredrik Brandsberg ◽  
Gustav von Schulthess ◽  
Irene A. Burger

Sign in / Sign up

Export Citation Format

Share Document