scholarly journals Tectono-Metamorphic Evolution of Serpentinites from Lanzo Valleys Subduction Complex (Piemonte—Sesia-Lanzo Zone Boundary, Western Italian Alps)

Minerals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 985
Author(s):  
Matteo Assanelli ◽  
Pietro Luoni ◽  
Gisella Rebay ◽  
Manuel Roda ◽  
Maria Iole Spalla

In the upper Tesso Valley the folded contact between Piemonte Zone ophiolites and Sesia-Lanzo Zone continental crust is exposed. Here serpentinites, metabasites, calcschists and fine-grained gneisses are deformed by four ductile superposed groups of structures, associated with different mineral assemblages. Different serpentinite lithologies have been recognized and studied in detail. Mylonitic D2 structures are pervasive and mineral assemblages point to re-equilibration at T of 450 ± 50 ∘C and P of 0.8 ± 0.3 GPa, under blueschist/epidote amphibolite-facies conditions. Pre-D2 structures and mineral assemblages are relics within S2 and indicate a re-equilibration under eclogite-facies conditions, at T of 570 ± 50 ∘C and P > 1.8 GPa. Post-D2 occurs under greenschist-facies conditions. Numerical modeling of a subduction zone allows exploration of the geodynamic context in which such PT path could have developed, and to make hypotheses about the possible timing of such a scenario, in agreement with the timing generally proposed for the Alpine subduction and collision. Model predictions indicate that pre-D2 mineral assemblages may have developed during Paleocene at 60–90 km depth and 115–145 km from the trench, or, alternatively, during lower Eocene at ca. 70–90 km depth, and 135–160 km from the trench.

2017 ◽  
Vol 83 (1) ◽  
pp. 75-90 ◽  
Author(s):  
Peter M. Yaworsky ◽  
Brian F. Codding

Explaining how and why populations settle a new landscape is central to many questions in American archaeology. Recent advances in settlement research have adopted predictions from the Ideal Free Distribution model (IFD). While tests of IFD predictions to date rely either on archaeologically derived coarse-grained diachronic data or ethnographically derived fine-grained synchronic data, here we provide the first test using historically derived data that is both fine-grained and diachronic. Fine-grain diachronic data allow us to test model predictions at a temporal scale in line with human settlement decisions and to validate proxies for application in archaeological contexts. To test model predictions pertaining to the relationship between population density and habitat quality, we use data from the historical settlement of Utah. The results demonstrate a negative relationship between population density and the quality of habitats occupied. These results are consistent with IFD predictions, suggesting that Euro-American settlement of Utah resulted from individuals attempting to maximize individual returns via agricultural productivity. Our results provide a quantitative and testable explanation for population dispersion over time and explain the spatial distribution of population density today. The results support predictions derived from a general theory of behavior, providing an explanatory framework for colonization events worldwide.


1998 ◽  
Vol 62 (2) ◽  
pp. 251-255 ◽  
Author(s):  
Bernhardt Saini-Eidukat ◽  
Nikolai S. Rudashevsky ◽  
Alexander G. Polozov

AbstractNew occurrences of hibbingite, γ-Fe2(OH)3Cl, have been found associated with platinum-group minerals in the Noril'sk Complex, and with the Korshunovskoye iron ores of the southern Siberian platform. The Norils'k grains, which are up to 0. 6 mm in diameter, are associated with the platinumgroup minerals froodite, cabriite, urvantsevite and with native silver in massive pentlandite–cubanite– chalcopyrite ore. The Korshunovskoye iron ore sample in which hibbingite was found is composed of fine-grained magnetite ore associated with halite. Hibbingite, hematite and silver grains are found in cavities in halite; the reddish-brown hibbingite grains usually occur as encrustations in the cavities. The size of hibbingite and hematite grains is up to 100 µm.Hibbingite from the Noril'sk Complex contains a significant kempite (Mn2(OH)3Cl) component; in some cases it contains over 50 mol. % Mn. These data suggest that at least a partial solid solution series exists between hibbingite and kempite. All known occurrences of hibbingite represent paragenetically late mineral assemblages. In the case of the Korshunovskoye deposits, the occurrences are associated with highly concentrated hydrothermal brines derived from the Lower Paleozoic saline sediments of the Siberian Platform cover.


1987 ◽  
Vol 124 (3) ◽  
pp. 261-271 ◽  
Author(s):  
Julian E. Andrews

AbstractClay minerals from Middle Jurassic lagoonal mudrocks, siltstones and silty fine-grained sandstones of the upper Great Estuarine Group (Bathonian) are divided into four assemblages. Assemblage 1, the most common assemblage, is rich in mixed-layer illite–smectite with attendant illite and kaolinite. Assemblage 2 is dominated by smectitic clay. These assemblages are indicative of primary Jurassic deposition. Illite and kaolinite were probably derived from the weathering of older rocks and soils in the basin hinterland and were deposited in the lagoons as river-borne detritus. The majority of smectite and mixed-layer illite–smectite is interpreted as the argillization product of Jurassic volcanic dust, also deposited in the lagoons by rivers. Near major Tertiary igneous intrusions these depositional clay mineral assemblages have been altered. Assemblage 3 contains smectite-poor mixed-layer illite–smectite, whilst Assemblage 4 contains no smectitic clay at all. Destruction of smectite interlayers occurred at relatively shallow burial depths (< 2500 m) due to enhanced geothermal gradients and local convective hot-water circulation cells associated with the major Tertiary igneous intrusions.


2020 ◽  
Vol 115 (4) ◽  
pp. 841-870 ◽  
Author(s):  
Kevin Byrne ◽  
Robert B. Trumbull ◽  
Guillaume Lesage ◽  
Sarah A. Gleeson ◽  
John Ryan ◽  
...  

Abstract The Highland Valley Copper porphyry Cu (±Mo) district is hosted in the Late Triassic Guichon Creek batholith in the Canadian Cordillera. Fracture-controlled sodic-calcic alteration is important because it forms a large footprint (34 km2) outside of the porphyry Cu centers. This alteration consists of epidote ± actinolite ± tourmaline veins with halos of K-feldspar–destructive albite (1–20 XAn) ± fine-grained white mica ± epidote. The distribution of sodic-calcic alteration is strongly influenced by near-orthogonal NE- and SE-trending fracture sets and by proximity to granodiorite stocks and porphyry dikes. Multiple stages of sodic-calcic alteration occurred in the district, which both pre- and postdate Cu mineralization at the porphyry centers. The mineral assemblages and chemical composition of alteration minerals suggest that the fluid that caused sodic-calcic alteration in the Guichon Creek batholith was Cl bearing, at near-neutral pH, and oxidized, and had high activities of Na, Ca, and Mg relative to propylitic and fresh-rock assemblages. The metasomatic exchange of K for Na, localized removal of Fe and Cu, and a paucity of secondary quartz suggest that the fluid was thermally prograding in response to magmatic heating. Calculated δ18Ofluid and δDfluid values of mineral pairs in isotopic equilibrium from the sodic-calcic veins and alteration range from 4 to 8‰ and −20 to −9‰, respectively, which contrasts with the whole-rock values for least altered magmatic host rocks (δ18O = 6.4–9.4‰ and δD = −99 to −75‰). The whole-rock values are suggested to reflect residual magma values after D loss by magma degassing, while the range of hydrothermal minerals requires a mixed-fluid origin with a contribution of magmatic water and an external water source. The O-H isotope results favor seawater as the source but could also reflect the ingress of Late Triassic meteoric water. The 87Sr/86Srinital values of strongly Na-Ca–altered rocks range from 0.703416 to 0.703508, which is only slightly higher than the values of fresh and potassic-altered rocks. Modeling of those data suggests the Sr is derived predominantly from a magmatic source, but the system may contain up to 3% seawater Sr. Supporting evidence for a seawater-derived fluid entrained in the porphyry Cu systems comes from boron isotope data. The calculated tourmaline δ11Bfluid values from the sodic-calcic domains reach 18.3‰, which is consistent with a seawater-derived fluid source. Lower tourmaline δ11Bfluid values from the other alteration facies (4–10‰) suggest mixing between magmatic and seawater-derived fluids in and around the porphyry centers. These results imply that seawater-derived fluids can infiltrate batholiths and porphyry systems at deep levels (4–5 km) in the crust. Sodic ± calcic alteration may be more common in rocks peripheral to porphyry Cu systems hosted in island-arc terranes and submarine rocks than currently recognized.


Solid Earth ◽  
2018 ◽  
Vol 9 (1) ◽  
pp. 167-189 ◽  
Author(s):  
Francesco Giuntoli ◽  
Pierre Lanari ◽  
Martin Engi

Abstract. Contiguous continental high-pressure terranes in orogens offer insight into deep recycling and transformation processes that occur in subduction zones. These remain poorly understood, and currently debated ideas need testing. The approach we chose is to investigate, in detail, the record in suitable rock samples that preserve textures and robust mineral assemblages that withstood overprinting during exhumation. We document complex garnet zoning in eclogitic mica schists from the Sesia Zone (western Italian Alps). These retain evidence of two orogenic cycles and provide detailed insight into resorption, growth, and diffusion processes induced by fluid pulses in high-pressure conditions. We analysed local textures and garnet compositional patterns, which turned out remarkably complex. By combining these with thermodynamic modelling, we could unravel and quantify repeated fluid–rock interaction processes. Garnet shows low-Ca porphyroclastic cores that were stable under (Permian) granulite facies conditions. The series of rims that surround these cores provide insight into the subsequent evolution: the first garnet rim that surrounds the pre-Alpine granulite facies core in one sample indicates that pre-Alpine amphibolite facies metamorphism followed the granulite facies event. In all samples documented, cores show lobate edges and preserve inner fractures, which are sealed by high-Ca garnet that reflects high-pressure Alpine conditions. These observations suggest that during early stages of subduction, before hydration of the granulites, brittle failure of garnet occurred, indicating high strain rates that may be due to seismic failure. Several Alpine rims show conspicuous textures indicative of interaction with hydrous fluid: (a) resorption-dominated textures produced lobate edges, at the expense of the outer part of the granulite core; (b) peninsulas and atoll garnet are the result of replacement reactions; and (c) spatially limited resorption and enhanced transport of elements due to the fluid phase are evident along brittle fractures and in their immediate proximity. Thermodynamic modelling shows that all of these Alpine rims formed under eclogite facies conditions. Structurally controlled samples allow these fluid–garnet interaction phenomena to be traced across a portion of the Sesia Zone, with a general decrease in fluid–garnet interaction observed towards the external, structurally lower parts of the terrane. Replacement of the Permian HT assemblages by hydrate-rich Alpine assemblages can reach nearly 100 % of the rock volume. Since we found no clear relationship between discrete deformation structures (e.g. shear zones) observed in the field and the fluid pulses that triggered the transformation to eclogite facies assemblages, we conclude that disperse fluid flow was responsible for the hydration.


2020 ◽  
Vol 115 (5) ◽  
pp. 1021-1054 ◽  
Author(s):  
Tarryn Kim Cawood ◽  
Abraham Rozendaal

Abstract The polymetamorphosed Swartberg Cu-Pb-Zn-Ag deposit in the Namaqua Metamorphic Province of South Africa is a major metal producer in the region, yet its genesis remains poorly understood. The deposit comprises several stratiform to stratabound units, namely the Lower Orebody and Dark Quartzite, the overlying Barite Unit, and the Upper Orebody, all of which are folded by an F2 isoclinal syncline and refolded by an open F3 synform. A discordant Garnet Quartzite unit surrounds the Upper Orebody in the F2 hinge, where it overprints the Lower Orebody and Barite Unit. The Lower Orebody comprises sulfidic, pelitic lenses with fine-grained pyrite, sphalerite, galena, and lesser pyrrhotite, hosted by sulfide-poor but magnetite- and barite-bearing siliceous rock. The overlying Barite Unit is poorly mineralized and grades from massive magnetite-barite close to the F2 hinge to distal laminated baritic schist and quartzite. The Dark Quartzite is the stratigraphic equivalent of the Lower Orebody and Barite Unit but comprises siliceous quartzite and schist, with lenses of conglomerate and minor Fe-Mn-Zn phases. The Upper Orebody displays rapid zonations from massive magnetite-rich iron formation in the F2 hinge, rich in coarse galena, pyrrhotite, and chalcopyrite, to sulfide-poor, magnetite-bearing schist and quartzite. The Garnet Quartzite is dominated by quartz and almandine garnet and mineralized with pyrite and chalcopyrite. Geochemical discriminant plots show that the Lower Orebody has a significant detrital component, whereas the Upper Orebody and Barite Unit are strongly zoned, with the greatest chemogenic component close to the F2 hinge. This corresponds to a deposit-scale metal zonation from the Cu-rich F2 hinge to more Pb- and then Zn-dominated areas. Mineral assemblages and paleoredox proxies suggest generally oxic conditions, with a more reduced signature close to the hinge and in the sulfidic Lower Orebody lenses. The Lower Orebody is interpreted as a mixed chemogenic-pelitic unit, with sulfides deposited on or near the seafloor during stage 1 hydrothermal activity. The sulfidic lenses formed from fine mud and clay deposited in quiet seafloor depressions, in which warm, dense, reducing, Pb-Zn-Ba–rich stage 1 brines accumulated, while the siliceous portions formed from higher-energy clastic sediments on aerated seafloor highs. The Barite Unit forms a baritic cap to the Lower Orebody, while the Dark Quartzite is their shallower-water equivalent. Thereafter, clastic sediment with lesser hydrothermal input was deposited during stage 2a exhalations, forming the poorly mineralized portions of the Upper Orebody. During stage 2b hydrothermal activity, hot Cu-Fe–rich fluids invaded part of the Upper Orebody, creating the highly chemogenic protolith to the well-mineralized, magnetite-rich portion. Associated hydrothermal alteration in a discordant subseafloor feeder zone created the Garnet Quartzite protolith. The F2 hinge thus corresponds closely to the original vent zone. Swartberg therefore resembles a deformed and metamorphosed Selwyn-type sedimentary exhalative deposit, with both proximal- (Upper Orebody, Garnet Quartzite) and distal-style (Lower Orebody) mineralization. The close association of these styles suggests that differences in the mineralizing fluids and depositional environment, rather than proximity to a vent, determine the deposit style.


1973 ◽  
Vol 13 (1) ◽  
pp. 68
Author(s):  
Jorg Bein ◽  
Brian R. Griffith ◽  
Andrew K. Svalbe

The Kingfish field, currently Australia's largest producing oil field, lies 48 miles offshore southeastern Victoria in 250 ft of water. The field occurs within a large, essentially, east-west trending topographic high on the Latrobe unconformity surface sealed by fine grained clastics of the Upper Eocene Gurnard and Oligocene Lakes Entrance Formations. The reservoir itself is formed by Lower Eocene sediments of interdeltaic origin.The discovery well, Kingfish 1, was spudded on 6 April 1967. This well indicated the severity of a suspected seismic velocity gradient, a function of high velocity channel deposits in Miocene sediments overlying the crest of the Latrobe unconformity surface. Additional seismic coverage and two outpost wells provided sufficient structural and stratigraphic control to define a commercial oil field having a maximum of 270 ft of vertical relief over an area of some 28 sq mi at the oil-water contact of 7,566 ft subsea.Following completion of the 42 well development drilling program for the A and B platforms the Kingfish oil field was put on stream on 21 April 1971. Proved and probable reserves have been initially estimated at 1,060 MM STB. The field has flowed oil at rates in excess of 180,000 STB/D for a cumulative production to the end of 1972 of 83 MM STB.


Author(s):  
Jie Dong ◽  
Chunjing Wei

Abstract The South Altyn ultrahigh-pressure (UHP) metamorphic belt is claimed to host the deepest subducted continental crust based on the discovery of former stishovite, and thus can provide unique insights into the tectonic evolution from deep continental subduction and exhumation to arc–backarc extension. In this paper, we present detailed studies of petrography, mineral chemistry, phase equilibria modelling and zircon U-Pb dating for three representative samples involving garnet amphibolite (A1531 & A1533) and associated garnet-biotite gneiss (A1534) from the UHP belt. Three phases of metamorphism are inferred for the rocks. The first phase high pressure (HP)–UHP-type eclogite facies is represented by the mineral assemblages of garnet and phengite inclusions in zircon and garnet cores with the high grossular (XGrs = 0.33–0.34). The Si contents of 3.40–3.53 and 3.24–3.25 p.f.u. in phengite inclusions yield pressure conditions of &gt;1.7–2.3 GPa for A1533 and 2.5–2.55 GPa for A1534 at a fixed temperature of 770 °C. The second phase medium-pressure (MP)-type overprinting of garnet amphibolite facies shows P–T conditions of 0.8–1.2 GPa/750–785 °C based on the stability fields of corresponding mineral assemblages, the measured isopleths of Ti contents in biotite and amphibole cores, and XGrs in garnet. The third phase low-pressure (LP) type overprinting includes early-stage heating to peak granulite facies followed by cooling towards a late-stage amphibolite facies. The peak granulite facies is represented by the high Ti amphibole mantle, high Zr titanite and the intergrowths of clinopyroxene + ilmenite in A1533 & A1531, with P–T conditions of 800–875 °C/0.80–0.95 GPa. The late-stage is defined by the solidus assemblages, giving P–T conditions of 0.5–0.7 GPa/720–805 °C. U-Pb geochronology on metamorphic zircons from A1533 and A1534 gives three ages of c. 500 Ma, c. 482 Ma and c. 460 Ma. They are interpreted to represent the HP–UHP, MP and LP types of metamorphism respectively, based on cathodoluminescence images, mineral inclusions and trace element patterns. Combining the regional geology and metamorphic evolution from the Altyn Orogen, a tectonic model is inferred, including the following tectonic scenarios. The small Altyn Microcontinent was subducted to great mantle depths with dragging of the surrounding vast oceanic lithosphere to undergo the HP–UHP eclogite facies metamorphism during the early subduction stage (c. 500 Ma) of the Proto-Tethys Ocean. Then, the subducted slabs were exhumed to a thickened crust region to be overprinted by the MP-type assemblages at c. 482 Ma. Finally, an arc–backarc extension was operated within the thickened crust region due to the retreat of subduction zones. It caused evident heating and the LP-type metamorphic overprinting at c. 460 Ma, with a fairly long interval of 30–40 Myr after the HP–UHP metamorphism, distinct from the short interval of &lt;5–10 Myr in the Bohemian Massif.


Sign in / Sign up

Export Citation Format

Share Document