scholarly journals Phase Stability and Vibrational Properties of Iron-Bearing Carbonates at High Pressure

Minerals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1142
Author(s):  
Chaoshuai Zhao ◽  
Liangxu Xu ◽  
Weibin Gui ◽  
Jin Liu

The spin transition of iron can greatly affect the stability and various physical properties of iron-bearing carbonates at high pressure. Here, we reported laser Raman measurements on iron-bearing dolomite and siderite at high pressure and room temperature. Raman modes of siderite FeCO3 were investigated up to 75 GPa in the helium (He) pressure medium and up to 82 GPa in the NaCl pressure medium, respectively. We found that the electronic spin-paring transition of iron in siderite occurred sharply at 42–44 GPa, consistent with that in the neon (Ne) pressure medium in our previous study. This indicated that the improved hydrostaticity from Ne to He had minimal effects on the spin transition pressure. Remarkably, the spin crossover of siderite was broadened to 38–48 GPa in the NaCl pressure medium, due to the large deviatoric stress in the sample chamber. In addition, Raman modes of iron-bearing dolomite Ca1.02Mg0.76Fe0.20Mn0.02(CO3)2 were explored up to 58 GPa by using argon as a pressure medium. The sample underwent phase transitions from dolomite-Ⅰ to -Ⅰb phase at ~8 GPa, and then to -Ⅱ at ~15 and -Ⅲb phase at 36 GPa, while no spin transition was observed in iron-bearing dolomite up to 58 GPa. The incorporation of FeCO3 by 20 mol% appeared to marginally decrease the onset pressures of the three phase transitions aforementioned for pure dolomite. At 55–58 GPa, the ν1 mode shifted to a lower frequency at ~1186 cm−1, which was likely associated with the 3 + 1 coordination in dolomite-Ⅲb. These results shed new insights into the nature of iron-bearing carbonates at high pressure.

2013 ◽  
Vol 98 (4) ◽  
pp. 736-744 ◽  
Author(s):  
T. Yamanaka ◽  
A. Kyono ◽  
Y. Nakamoto ◽  
Y. Meng ◽  
S. Kharlamova ◽  
...  

2008 ◽  
Vol 72 (2) ◽  
pp. 659-665 ◽  
Author(s):  
S. Ono ◽  
J. P. Brodholt ◽  
G. D. Price

AbstractFirst-principles simulations and high-pressure experiments were used to study the stability of BaCO3 carbonates at high pressures. Witherite, which is orthorhombic and isotypic with CaCO3 aragonite, is stable at ambient conditions. As pressure increases, BaCO3 transforms from witherite to an orthorhombic post-aragonite structure at 8 GPa. The calculated bulk modulus of the post-aragonite structure is 60.7 GPa, which is slightly less than that from experiments. This structure shows an axial anisotropicc ompressibility and the a axis intersects with the c axis at 70 GPa, which implies that the pressure-induced phase transition reported in previous experimental study is misidentified. Although a pyroxene-like structure is stable in Mg- and Ca-carbonates at pressures >100 GPa, our simulations showed that this structure does not appear in BaCO3.


Minerals ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 614 ◽  
Author(s):  
Akaogi ◽  
Tajima ◽  
Okano ◽  
Kojitani

Phase transitions of Mg2TiO4 and Fe2TiO4 were examined up to 28 GPa and 1600 °C using a multianvil apparatus. The quenched samples were examined by powder X-ray diffraction. With increasing pressure at high temperature, spinel-type Mg2TiO4 decomposes into MgO and ilmenite-type MgTiO3 which further transforms to perovskite-type MgTiO3. At 21 GPa, the assemblage of MgTiO3 perovskite + MgO changes to 2MgO + TiO2 with baddeleyite (or orthorhombic I)-type structure. Fe2TiO4 undergoes transitions similar to Mg2TiO4 with pressure: spinel-type Fe2TiO4 dissociates into FeO and ilmenite-type FeTiO3 which transforms to perovskite-type FeTiO3. Both of MgTiO3 and FeTiO3 perovskites change to LiNbO3-type phases on release of pressure. In Fe2TiO4, however, perovskite-type FeTiO3 and FeO combine into calcium titanate-type Fe2TiO4 at 15 GPa. The formation of calcium titanate-type Fe2TiO4 at high pressure may be explained by effects of crystal field stabilization and high spin–low spin transition in Fe2+ in the octahedral sites of calcium titanate-type Fe2TiO4. It is inferred from the determined phase relations that some of Fe2TiO4-rich titanomagnetite inclusions in diamonds recently found in São Luiz, Juina, Brazil, may be originally calcium titanate-type Fe2TiO4 at pressure above 15 GPa in the transition zone or lower mantle and transformed to spinel-type in the upper mantle conditions.


Entropy ◽  
2019 ◽  
Vol 21 (3) ◽  
pp. 239 ◽  
Author(s):  
Fei Zhang ◽  
Hongbo Lou ◽  
Benyuan Cheng ◽  
Zhidan Zeng ◽  
Qiaoshi Zeng

High-entropy alloys (HEAs) as a new class of alloy have been at the cutting edge of advanced metallic materials research in the last decade. With unique chemical and topological structures at the atomic level, HEAs own a combination of extraordinary properties and show potential in widespread applications. However, their phase stability/transition, which is of great scientific and technical importance for materials, has been mainly explored by varying temperature. Recently, pressure as another fundamental and powerful parameter has been introduced to the experimental study of HEAs. Many interesting reversible/irreversible phase transitions that were not expected or otherwise invisible before have been observed by applying high pressure. These recent findings bring new insight into the stability of HEAs, deepens our understanding of HEAs, and open up new avenues towards developing new HEAs. In this paper, we review recent results in various HEAs obtained using in situ static high-pressure synchrotron radiation x-ray techniques and provide some perspectives for future research.


Author(s):  
Daniel Errandonea ◽  
Javier Ruiz-Fuertes

In this article we review the advances that have been made on the understanding of the high-pressure structural, vibrational, and electronic properties of wolframite-type oxides since the first works in the early 1990s. Mainly tungstates, which are the best known wolframites, but also tantalates and niobates, with an isomorphic ambient-pressure wolframite structure, have been included in this review. Apart from estimating the bulk moduli of all known wolframites; the cation-oxygen bond distances and their change with pressure have been correlated with their compressibility. The composition variations of all wolframites have been employed to understand their different structural phase transitions to post-wolframite structures as a response to high pressure. The number of Raman modes and band gap energy changes have been also analyzed in the basis of these compositional differences. The reviewed results are relevant for both fundamental science and for the development of wolframites as scintillating detectors. The possible next research venues of wolframites have also been evaluated.


Author(s):  
Martin Etter ◽  
Melanie Müller ◽  
Michael Hanfland ◽  
Robert E. Dinnebier

Sequential Rietveld refinements were applied on high-pressure synchrotron powder X-ray diffraction measurements of lanthanum ferrite (LaFeO3) revealing two phase transitions on the room-temperature isotherm up to a pressure of 48 GPa. The first structural phase transition of second order occurs at a pressure of 21.1 GPa, changing the space group fromPbnmtoIbmm. The second transition, involving a isostructural first-order phase transition, occurs at approximately 38 GPa, indicating a high-spin to low-spin transition of the Fe3+ion. Following the behavior of the volume up to the hydrostatic limit of methanol–ethanol it was possible to use inverted equations of state (EoS) to determine a bulk modulus ofB0= 172 GPa and a corresponding pressure derivative ofB′0= 4.3. In addition, the linearized version of the inverted EoS were used to determine the corresponding moduli and pressure derivatives for each lattice direction.


Crystals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 34
Author(s):  
Akun Liang ◽  
Robin Turnbull ◽  
Enrico Bandiello ◽  
Ibraheem Yousef ◽  
Catalin Popescu ◽  
...  

We report the first high-pressure spectroscopy study on Zn(IO3)2 using synchrotron far-infrared radiation. Spectroscopy was conducted up to pressures of 17 GPa at room temperature. Twenty-five phonons were identified below 600 cm−1 for the initial monoclinic low-pressure polymorph of Zn(IO3)2. The pressure response of the modes with wavenumbers above 150 cm−1 has been characterized, with modes exhibiting non-linear responses and frequency discontinuities that have been proposed to be related to the existence of phase transitions. Analysis of the high-pressure spectra acquired on compression indicates that Zn(IO3)2 undergoes subtle phase transitions around 3 and 8 GPa, followed by a more drastic transition around 13 GPa.


Sign in / Sign up

Export Citation Format

Share Document