scholarly journals Revisiting the Intermediate Sediment Repository Concept Applied to the Provenance of Zircon

Minerals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 233
Author(s):  
Manuel Francisco Pereira ◽  
Cristina Gama

This paper revisits the intermediate sediment repository (ISR) concept applied to provenance, using a comparison of the detrital zircon population of Holocene beach sand from the southwest Portuguese coast with populations from their potential source rocks. The U–Pb age of detrital zircon grains in siliciclastic rocks allows for the interpretation of provenance by matching them with the crystallization ages of igneous source (protosource) rocks in which this mineral originally crystallized or which was subsequently recycled from it, acting as ISRs. The comparative analysis of the Precambrian, Paleozoic, and Cretaceous ages using recent statistical tools (e.g., kernel density estimator (KDE), cumulative age distribution (CAD), and multidimensional scaling (MDS)) suggests that the zircon age groups of Carboniferous, Triassic, and Pliocene-Pleistocene ISRs are reproduced faithfully in Holocene sand. Furthermore, the recycling of a protosource (Cretaceous syenite) in a sedimentary system dominated by ISRs is evaluated. It is argued that the ISR concept, which is not always taken into account, is required for a better understanding of the inherent complexity of local provenance and to differentiate sediment recycling from first- cycle erosion of an igneous rock.

2020 ◽  
Vol 123 (3) ◽  
pp. 331-342
Author(s):  
T. Andersen ◽  
M.A. Elburg ◽  
J. Lehmann

Abstract Detrital zircon grains from three samples of sandstone from the Tswaane Formation of the Okwa Group of Botswana have been dated by U-Pb and analysed for Hf isotopes by multicollector LA-ICPMS. The detrital zircon age distribution pattern of the detrital zircons is dominated by a mid-Palaeoproterozoic age fraction (2 000 to 2 150 Ma) with minor late Archaean – early Palaeoproterozoic fractions. The 2 000 to 2 150 Ma zircon grains show a range of epsilon Hf from -12 to 0. The observed age and Hf isotope distributions overlap closely with those of sandstones of the Palaeoproterozoic Waterberg Group and Keis Supergroup of South Africa, but are very different from Neoproterozoic deposits in the region, and from the Takatswaane siltstone of the Okwa Group, all of which are dominated by detrital zircon grains younger than 1 950 Ma. The detrital zircon data indicate that the sources of Tswaane Formation sandstones were either Palaeoproterozoic rocks in the basement of the Kaapvaal Craton, or recycled Palaeoproterozoic sedimentary rocks similar to the Waterberg, Elim or Olifantshoek groups of South Africa. This implies a significant shift in provenance regime between the deposition of the Takatswaane and Tswaane formations. However, the detrital zircon data are also compatible with a completely different scenario in which the Tswaane Formation consists of Palaeoproterozoic sedimentary rock in tectonic rather than depositional contact with the other units of the Okwa Group.


Geology ◽  
2005 ◽  
Vol 33 (8) ◽  
pp. 637-640 ◽  
Author(s):  
G. Gutiérrez-Alonso ◽  
J. Fernández-Suárez ◽  
Alan S. Collins ◽  
I. Abad ◽  
F. Nieto

Abstract The 40Ar/39Ar age data on single detrital muscovite grains complement U-Pb zircon ages in provenance studies, as micas are mostly derived from proximal sources and record low-temperature processes. Ediacaran and Cambrian sedimentary rocks from northwest Iberia contain unmetamorphosed detrital micas whose 40Ar/39Ar age spectra suggest an Amazonian–Middle American provenance. The Ediacaran sample contained only Neoproterozoic micas (590–783 Ma), whereas the Cambrian sample contained three age groups: Neoproterozoic (550–640 Ma, Avalonian–Cadomian–Pan African), Mesoproterozoic- Neoproterozoic boundary (ca. 920–1060 Ma, Grenvillian-Sunsas), and late Paleoproterozoic (ca. 1580–1780 Ma, Rio Negro). Comparison of 40Ar/39Ar muscovite ages with published detrital zircon age data from the same formations supports the hypothesis that the Neoproterozoic basins of northwest Iberia were located in a peri-Amazonian realm, where the sedimentary input was dominated by local periarc sources. Tectonic slivering and strike-slip transport along the northern Gondwanan margin affected both the basins and fragments of basement that were transferred from Amazonian to northern African realms during the latest Neoproterozoic–earliest Cambrian. Exhumation and erosion of these basement sources caused shedding of detritus to the Cambrian basins, in addition to detritus sourced in the continental mainland. The apparent dominance of Rio Negro–aged micas in the Cambrian sandstone suggests the presence of unexposed basement of that age beneath the core of the Ibero-Armorican Arc.


2020 ◽  
Author(s):  
C.R. Fasulo ◽  
et al.

Supplemental Figure S1. Normalized distribution plot of detrital zircon ages from the Kahiltna assemblage of the central Alaska Range (Hampton et al., 2010), the Wellesly basin (this study), and the Kahiltna assemblage of the northwestern Talkeetna Mountains (Hampton et al., 2010). Note that the detrital zircon age distribution of ages older than 500 Ma has 10× vertical exaggeration.


Minerals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1023
Author(s):  
Hyojong Lee ◽  
Min Gyu Kwon ◽  
Seungwon Shin ◽  
Hyeongseong Cho ◽  
Jong-Sun Kim ◽  
...  

Zircon U-Pb geochronology and bulk-rock geochemistry analyses were carried out to investigate their relationship with depositional environments of the non-marine Neungju Basin sediments in South Korea. The Neungju Basin was formed in an active continental margin setting during the Late Cretaceous with associated volcanism. Detrital zircon age distributions of the Neungju Basin reveal that the source rocks surrounding the basin supplied sediments into the basin from all directions, making different zircon age populations according to the depositional environments. Mudstone geochemistry with support of detrital zircon U-Pb age data reveals how the heterogeneity affects the geochemical characteristics of tectonic setting and weathering intensity. The sediments in the proximal (alluvial fan to sandflat) and distal (playa lake) environments differ compositionally because sediment mixing occurred exclusively in the distal environment. The proximal deposits show a passive margin signature, reflecting their derivation from the adjacent metamorphic and granitic basement rocks. The distal deposits properly indicate an active continental margin setting due to the additional supply of reworked volcaniclastic sediments. The proximal deposits indicate a minor degree of chemical weathering corresponding to fossil and sedimentological records of the basin, whereas the distal deposits show lower weathering intensity by reworking of unaltered volcaniclastic detritus from unstable volcanic and volcaniclastic terranes. Overall, this study highlights that compositional data obtained from a specific location and depositional environments may not describe the overall characteristic of the basin.


1984 ◽  
Vol 121 (4) ◽  
pp. 269-277 ◽  
Author(s):  
A. J. Hurford ◽  
F. J. Fitch ◽  
A. Clarke

AbstractModes in the frequency of distribution of fission track ages obtained from detrital zircon grains may prove characteristic of individual sandstone bodies, supporting the identification of the sources from which a particular flow of sedimentary detritus was derived and thus allowing new inferences to be made concerning palaeogeography. A computer program has been written and used to identify modes in the zircon fission track age distribution within two Lower Cretaceous sandstone samples from the Weald of southern England. Pronounced modes appear in one rock around 119 Ma, 160 Ma, 243 Ma and 309 Ma and in the other around 141 Ma, 175 Ma, 257 to 277 Ma and 394 to 453 Ma. The geological implications of these quite dissimilar zircon age spectra are discussed. It is concluded that they support the palaeogeographical models of Allen (1981) and indicate that the provenance of the first sample, from the Top Ashdown Sandstone member at Dallington in East Sussex, was almost entirely southerly, while that of the second, from the Netherside Sand member at Northchapel in West Sussex, was more varied, but predominantly westerly and northerly.


2021 ◽  
Author(s):  
Guido Pastore ◽  
Thomas Baird ◽  
Pieter Vermeesch ◽  
Alberto Resentini ◽  
Eduardo Garzanti

<p>The Sahara is by far the largest hot desert on Earth. Its composite structure includes large dune fields hosted in sedimentary basins separated by elevated areas exposing the roots of Precambrian orogens or created by recent intraplate volcanism. Such an heterogeneity of landscapes and geological formations is contrasted by a remarkably homogeneous composition of dune sand, consisting almost everywhere of quartz and durable minerals such as zircon, tourmaline, and rutile.</p><p>We here present the first comprehensive provenance study of the Sahara Desert using a combination of multiple provenance proxies such as bulk-petrography, heavy-mineral, and detrital-zircon U–Pb geochronology. A set of statistical tools including Multidimensional Scaling, Correspondence Analysis, Individual Difference Scaling, and General Procrustes Analysis was applied to discriminate among sample groups with the purpose to reveal meaningful compositional patterns and infer sediment transport pathways on a geological scale.</p><p>Saharan dune fields are, with a few local exceptions, composed of pure quartz with very poor heavy-mineral suites dominated by durable zircon, tourmaline, and rutile. Some more feldspars, amphibole, epidote, garnet, or staurolite occur closer to basement exposures, and carbonate grains, clinopyroxene and olivine near a basaltic field in Libya. Relatively varied compositions also characterize sand along the Nile Valley and the southern front of the Anti-Atlas fold belt in Morocco. Otherwise, from the Sahel to the Mediterranean Sea and from the Nile River to the Atlantic Ocean, sand consists nearly exclusively of quartz and durable minerals. These have been concentrated through multiple cycles of erosion, deposition, and diagenesis during the long period of relative tectonic quiescence that followed the Neoproterozoic Pan-African orogeny, the last episode of major crustal growth in the region. The principal ultimate source of recycled sand is held to be represented by the thick blanket of quartz-rich sandstones that were deposited in the Cambro-Ordovician from the newly formed Arabian-Nubian Shield in the east to Mauritania in the west.</p><p>The composition and homogeneity of Saharan dune sand reflects similar generative processes and source rocks, and extensive recycling repeated through geological time after the end of the Neoproterozoic, which zircon-age spectra indicate as the last major event of crustal growth in the region. The geographic zircon-age distribution in daughter sands thus chiefly reflects the zircon-age distribution in parent sandstones, and hence sediment dispersal systems existing at those times rather than present wind patterns. This leads to the coclusion that, provenance studies based on detrital-zircon ages, the assumption that observed age patterns reflect transport pathways existing at the time of deposition rather than inheritance from even multiple and remote landscapes of the past thus needs to be carefully investigated and convincingly demonstrated rather than implicitly assumed.</p>


2020 ◽  
pp. 1-19 ◽  
Author(s):  
Cristina Gama ◽  
M Francisco Pereira ◽  
Quentin G Crowley ◽  
Ícaro Dias da Silva ◽  
J Brandão Silva

Abstract Detrital zircon populations from six samples of upper Triassic sandstone (Algarve Basin) were analysed, yielding mostly Precambrian ages. zircon age populations of the Triassic sandstone sampled from the western and central sectors of the basin are distinct, suggesting local recycling and/or lateral changes in their sources. Our findings and the available detrital zircon ages from the Palaeozoic terranes of SW Iberia, Nova Scotia and NW Morocco were jointly examined using the Kolmogorov–Smirnov test and multidimensional scaling diagrams. The obtained results enable direct discrimination of competing Laurussian-type and Gondwanan-type sediment sources, involving recycling and mixing relationships. The detrital zircon populations of the Algarve Triassic sandstone are very different from those of the lower–upper Carboniferous Mértola and Mira formations (South Portuguese Zone), upper Devonian – lower Carboniferous Horta da Torre, Represa and Santa Iria formations (Pulo do Lobo Zone), and the late Carboniferous Santa Susana and early Permian Viar basins, which are ruled out as potential sources. The detrital zircon populations of Triassic sandstone from the central sector and those from the Ossa–Morena Zone Ediacaran–Cambrian siliciclastic rocks, upper Devonian – Carboniferous Ronquillo, Tercenas, Phyllite-Quartzite and Brejeira formations (South Portuguese Zone), and Frasnian siliciclastic rocks of the Pulo do Lobo Zone are not statistically distinguishable. Thus, sedimentation in the central sector was influenced by Gondwanan- and Laurussian-type putative sources exposed in SW Iberia, in contrast to the western sector, where Meguma Terrane and Sehoul Block Cambrian siliciclastic rocks allegedly constituted the main (Laurussian-type) sources. These findings provide insights into the denudation of distinctive source terranes distributed along the late Palaeozoic suture zone that juxtaposed the Laurussian and Gondwanan margins.


Geology ◽  
2021 ◽  
Author(s):  
Shanan E. Peters ◽  
Craig R. Walton ◽  
Jon M. Husson ◽  
Daven P. Quinn ◽  
Oliver Shorttle ◽  
...  

Rock quantity and age are fundamental features of Earth’s crust that pertain to many problems in geoscience. Here we combine new estimates of igneous rock area in continental crust from the Macrostrat database (https://macrostrat.org/) with a compilation of detrital zircon ages in order to investigate rock cycling and crustal growth. We find that there is little or no decrease in igneous rock area with increasing rock age. Instead, igneous rock area in North America exhibits four distinct Precambrian peaks, remains low through the Neoproterozoic, and then increases only modestly toward the recent. Peaks in Precambrian detrital zircon age frequency distributions align broadly with peaks in igneous rock area, regardless of grain depositional age. However, detrital zircon ages do underrepresent a Neoarchean peak in igneous rock area; young grains and ca. 1.1 Ga grains are also overrepresented relative to igneous area. Together, these results suggest that detrital zircon age distributions contain signatures of continental denudation and sedimentary cycling that are decoupled from the cycling of igneous source rocks. Models of continental crustal evolution that incorporate significant early increase in volume and increased sedimentation in the Phanerozoic are well supported by these data.


Sign in / Sign up

Export Citation Format

Share Document