scholarly journals Assessment of Soil Contamination by Gas Cloud Generated from Chemical Fire Using Metabolic Profiling and Associated Bacterial Communities

Minerals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 372
Author(s):  
Jungman Jo ◽  
Yongtae Ahn ◽  
Kalimuthu Pandi ◽  
Heesoo Pyo ◽  
Naeun Kim ◽  
...  

Chemical accidents have frequently occurred in South Korea as a result of the huge amount of chemicals being used in various industries. Even though fire accidents accounted for 71.9% of chemical accidents during 2008–2018 in South Korea, most ecological research and investigation has focused on leakage accidents since most fire or explosion gases are diffused out and disappear into the atmosphere. In this study, the possibility of soil contamination by toluene combustion is proposed. A fire simulation batch test was performed and identified the combustion by-products such as methylbenzene, ethylbenzene, ethynylbenzene, benzaldehyde, 1-phenyl-1-propyne, naphthalene, 2-methylindene using gas chromatography coupled with mass spectrometry (GC–MS). Naphthyl-2-methyl-succinic acid, a metabolic intermediate of naphthalene metabolism derived from the combustion product of toluene, was also discovered in field soil and the secondary metabolites such as streptomycin 6-phosphate, 3-Nitroacrylate, oxaloacetate using LC–MS. Moreover, Streptomyces scabiei, participating in naphthalene metabolism, was also discovered in filed soil (contaminated soil) using 16s rRNA sequencing. As a result, bacterial stress responses in field soil (contaminated soil) affected by gas cloud were identified by discovering metabolites relating to bacterial self-defense action such as fatty biosynthesis. This study draws a conclusion that soil can be polluted enough to affect bacteria by gas cloud and soil bacteria and can encounter stress for a long term even though toluene and its combustion products had already decomposed in soil.

2021 ◽  
Author(s):  
Amaia Nogales ◽  
Erika S. Santos ◽  
Gonçalo Victorino ◽  
Wanda Viegas ◽  
Maria Manuela Abreu

<p>Copper-based fungicides are commonly applied in vineyards to control fungal diseases that can severely affect grapevine productivity. Continuous application of this type of fungicides contributes to Cu accumulation in surface horizons of the soil, which can generate toxicity problems in plants, regardless of being an essential nutrient. Several strategies have been proposed to immobilize or counteract the effect of soil contaminants, such as plant inoculation with arbuscular mycorrhizal fungi (AMF). However, depending on the element concentration, this may not be sufficient to avoid its excessive accumulation in belowground and/or aboveground organs. Since Fe is known to have an antagonistic interaction with Cu in plants, Fe application, as an amendment, in vineyard soils, could be a good strategy to avoid excessive Cu uptake by grapevines growing in Cu-contaminated soils. However, little information is available on the combined effects of both strategies.</p><p>In order to reveal the possible beneficial effects of plant mycorrhization and Fe application in Cu-contaminated soils on grapevine growth and nutrition, a mesocosm experiment was established under controlled conditions. Two-year-old plants, previously inoculated or not with two different AMF, were grown in pots filled with 6.5 kg of an Arenosol collected from a wine-growing region. These plants were subjected to three soil treatments: 1) soil contamination with Cu, where the grapevines were watered with a solution containing 5.89 mg/L CuSO<sub>4</sub> to ensure that the soil in each container reached 300 mg Cu/kg; 2) soil contamination with Cu + Fe addition, where the plants were watered with a solution that contained the same amount of CuSO<sub>4</sub> plus 0.38 mg/L of FeNaEDTA·3H<sub>2</sub>O to achieve 100 mg of Fe/kg soil; and 3) non-contaminated soil watered with deionized water. Four months later, at the end of the growing season, plant vegetative growth as well as leaf and root nutrient contents were analyzed.</p><p>Grapevines inoculated with AMF demonstrated a good level of tolerance to high Cu concentrations in soil, as they presented significantly higher root biomass than non-inoculated plants and Cu was mainly accumulated in the roots avoiding its translocation to the aerial part. However, when the Cu-contaminated soil was amended with Fe, a significant decrease was observed in root biomass in all mycorrhizal inoculation treatments and Cu was accumulated in grapevine leaves. Contrastingly, Fe application helped to avoid the excessive increase of Mn concentrations in leaf and roots that is commonly induced in Cu contaminated soils, which can be detrimental for grapevine growth.</p><p>These results demonstrated that mycorrhizal inoculation is a suitable strategy to promote grapevine growth in Cu-contaminated soils. However, special attention needs to be taken when applying amendments to correct Cu contamination, as the mycorrhizal status of plants may alter the expected outcome.</p><p> </p><div> <div> </div> </div>


Author(s):  
Ivica Kisić

Soil is a thin (up to 50cm) loose top layer of the Earth's surface, located between the lithosphere and atmosphere. Total available land area on Earth is limited, and the soil is extremely important, and in one generation it is a non-renewable natural resource. Unfortunately, nowadays the soil is, next to water, one of the most endangered natural resources. Among the many processes of soil damage, which is not being addressed at this point, is the growing importance placed on soil contamination. Contaminated soil is the soil in which human or natural activity has increased the content of harmful substances whose concentrations may be harmful to human activity, that is, for the production of plants or animals.


2020 ◽  
Vol 123 ◽  
pp. 104544
Author(s):  
Hangnan Yu ◽  
Woo-Kyun Lee ◽  
Jong Ryeul Sohn

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yuchen Kang ◽  
Li Yang ◽  
Haibo Dai ◽  
Mengdi Xie ◽  
Yuhao Wang ◽  
...  

AbstractChinese herbal medicine is widely cultivated in Southwest China, where the soil cadmium (Cd) contamination of farmland is more serious than that in China as a whole. In this study, Polygonatum sibiricum was exposed to Cd at concentrations of e−1, e0, e2, and e4 mg/kg for 30, 60, and 90 days, and the physiological stress responses, Cd and mineral element uptake, antioxidant enzyme activities, and content changes of pharmaceutical ingredients (polysaccharides) were analyzed to decipher the feasibility of safe utilization in Cd-contaminated soil. The results show that the activity of antioxidant enzymes (SOD and CAT) in the aboveground part was always higher than that in the underground part. The underground part of Polygonatum sibiricum mobilizes nonenzymatic systems to facilitate the synthesis of polysaccharides (PCP1, PCP2) with antioxidant properties to cope with Cd stress. Mineral elements (P, K, Ca, Mg, Fe, Cu, and Zn) significantly (p < 0.05) changed after 90 d of cultivation. In particular, the changes in the iron and zinc content were significantly correlated (p < 0.05) with the activities of SOD and POD. Soil Cd at e0 mg/kg can guarantee the safe production and utilization of Polygonatum sibiricum, and the stimulation of Cd promotes polysaccharide synthesis and biomass growth.


Sign in / Sign up

Export Citation Format

Share Document