scholarly journals The Effect of pH, Ionic Strength and the Presence of PbII on the Formation of Calcium Carbonate from Homogenous Alkaline Solutions at Room Temperature

Minerals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 783
Author(s):  
Fulvio Di Lorenzo ◽  
Kay Steiner ◽  
Sergey V. Churakov

Precipitation of calcium carbonates in aqueous systems is an important factor controlling various industrial, biological, and geological processes. In the first part of this study, the well-known titration approach introduced by Gebauer and coworkers in 2008 s used to obtain reliable experimental dataset for the deep understanding of CaCO3 nucleation kinetics in supersaturated solutions over a broad range of pH and ionic strength conditions. In the second part, the effect of impurities, i.e., 1 mol% of Pb2+, was assessed in the same range of experimental conditions. Divalent lead has been shown to have an inhibitory effect in all ranges of the conditions tested except for pH 8 and low ionic strength (≤0.15 mol/L). Future investigations might take advantage of the methodology and the data provided in this work to investigate the effect of other system variables. The investigation of all the major variables and the assessment of eventual synergic effects could improve our ability to predict the formation of CaCO3 in complex natural systems.

1984 ◽  
Vol 49 (7) ◽  
pp. 1635-1641 ◽  
Author(s):  
Jiří Herejk ◽  
Záviš Holzbecher

The effect was studied of experimental conditions (pH, ionic strength, supply voltage, and type of electrodes) and of the presence of some cations and anions on the luminiscence of aqueous solutions of luminol generated by alternating current. Of the ions studied, Co2+ and Br- affected the electrochemiluminiscence (ECL) of luminol to the highest extent. Co2+ ions increase the ECL of luminol in alkaline solutions in concentrations cCo2+ = 10-3-6.10-6 mol l-1, the limit of determination of cobalt is 0.13 μg ml-1. In the presence of bromide in concentrations higher than 0.2 mol l-1, however, Co2+ lowers the ECL intensity over the concentration region of cCo2+ = 10-2-2.10-4 mol l-1. Alkali metal and alkaline earth cations as well as small amount of Pb2+, Zn2+, Cu2+, Cr3+, and Fe3+ have no appreciable effect on the ECL of luminol.


1971 ◽  
Vol 67 (1) ◽  
pp. 159-173
Author(s):  
A. Peytremann ◽  
R. Veyrat ◽  
A. F. Muller

ABSTRACT Variations in plasma renin activity and urinary aldosterone excretion were studied in normal subjects submitted to salt restriction and simultaneous inhibition of ACTH production with a new synthetic steroid, 6-dehydro-16-methylene hydrocortisone (STC 407). At a dose of 10 mg t. i. d. this preparation exerts an inhibitory effect on the pituitary comparable to that of 2 mg of dexamethasone. In subjects maintained on a restricted salt intake, STC 407 does not delay the establishment of an equilibrium in sodium balance. The increases in endogenous aldosterone production and in plasma renin activity are also similar to those seen in the control subjects. A possible mineralocorticoid effect of STC 407 can be excluded. Under identical experimental conditions, the administration of dexamethasone yielded results comparable to those obtained with STC 407.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Paul M. Magyar ◽  
Damian Hausherr ◽  
Robert Niederdorfer ◽  
Nicolas Stöcklin ◽  
Jing Wei ◽  
...  

AbstractAnaerobic ammonium oxidation (anammox) plays an important role in aquatic systems as a sink of bioavailable nitrogen (N), and in engineered processes by removing ammonium from wastewater. The isotope effects anammox imparts in the N isotope signatures (15N/14N) of ammonium, nitrite, and nitrate can be used to estimate its role in environmental settings, to describe physiological and ecological variations in the anammox process, and possibly to optimize anammox-based wastewater treatment. We measured the stable N-isotope composition of ammonium, nitrite, and nitrate in wastewater cultivations of anammox bacteria. We find that the N isotope enrichment factor 15ε for the reduction of nitrite to N2 is consistent across all experimental conditions (13.5‰ ± 3.7‰), suggesting it reflects the composition of the anammox bacteria community. Values of 15ε for the oxidation of nitrite to nitrate (inverse isotope effect, − 16 to − 43‰) and for the reduction of ammonium to N2 (normal isotope effect, 19–32‰) are more variable, and likely controlled by experimental conditions. We argue that the variations in the isotope effects can be tied to the metabolism and physiology of anammox bacteria, and that the broad range of isotope effects observed for anammox introduces complications for analyzing N-isotope mass balances in natural systems.


1981 ◽  
Vol 98 (2) ◽  
pp. 240-245 ◽  
Author(s):  
T. Kaminski ◽  
J. Köhrle ◽  
R. Ködding ◽  
R.-D. Hesch

Abstract. Conversion of thyroxine (T4) to 3,3′,5′-triiodothyronine (rT3) was studied in rat liver microsomes. Addition of rT3 at a physiological concentration to the incubation medium inhibited the deiodination of thyroxine to rT3. With a concentration of rT3 greater than 37.6 nM no net rT3 production at pH 8.0 was observed. Further increases in rT3 concentration resulted only in degradation of added rT3 and no net synthesis of rT3 from T4 could be detected. The inhibitory effect of rT3 upon its own production from T4 was pH dependent, 5 fold lower amounts of hormone being required to inhibit completely rT3 production at pH 7.4 than at pH 8.0. With the same experimental conditions no significant effect of rT3 on the conversion of T4 to 3,5,3′-triiodothyronine (T3) could be observed at pH 8.0 with all concentrations of added iodothyronine. A linear production of 3,3′-T2 from added rT3 was determined over the whole range of rT3 concentration, suggesting a lack of saturation of deiodinating enzyme. Binding of rT3 by anti-rT3 antibody added to the incubation mixture enhanced rT3 production from T4 by protecting rT3 from being degraded and/or diminishing the inhibitory effect of this iodothyronine on its own production. It was concluded that rT3 influenced its own production and that this effect may represent an important autoregulatory process in the iodothyronine metabolism.


2018 ◽  
Vol 107 (1) ◽  
pp. 39-54
Author(s):  
Chunli Wang ◽  
Xiaoyu Yang ◽  
Jiangang He ◽  
Fangxin Wei ◽  
Zhong Zheng ◽  
...  

Abstract To explore the diffusion behavior of 75Se(IV) in Beishan granite (BsG), the influences of temperature, oxygen condition and ionic strength were investigated using the through-diffusion experimental method. The effective diffusion coefficient De of 75Se(IV) in BsG varied from 4.21×10−14 m2/s to 3.19×10−13 m2/s in our experimental conditions, increased with increasing temperature. The formation factor Ff of BsG was calculated to be nearly constant in the range of temperatures investigated, suggesting that the inner structure of BsG had no significant change in the temperature range of 20–55°C. Meanwhile, the De values of 75Se(IV) in BsG under anaerobic condition was significantly larger than that under aerobic condition, which may be attributed to the difference in the sorption characteristics and species distribution of Se and pH values. Moreover, the diffusion of 75Se(IV) was promoted with ionic strength increased from 0.01 M to 0.1 M, and then decreased at 0.5 M, mainly due to the combined effects of reduced double layers with increased ionic strength and increase of the solution viscosity at higher ionic strength.


2012 ◽  
Vol 2012 ◽  
pp. 1-9
Author(s):  
K. Bharath Kumar Naik ◽  
B. Ananda Kumar ◽  
S. Raju ◽  
G. Nageswara Rao

Equilibrium study on complex formation of L-histidine with Pb(II), Cd(II), and Hg(II) has been investigated pH metrically in DMSO-water mixtures (0–60% v/v) at 303 K and 0.16 mol L−1 ionic strength. The predominant species detected for Pb(II) and Cd(II) are ML2H4, ML2H3, ML2H2, ML2H, and ML2 and those for Hg(II) are ML2H4, ML2H3, ML2, and ML. The appropriateness of experimental conditions is verified by introducing errors intentionally in the concentrations of ingredients. The models containing different numbers of species were refined by using the computer program MINIQUAD75. The best-fit chemical models were arrived at based on statistical parameters. The trend in variation of stability constants of the complexes with dielectric constant of the medium is attributed to the electrostatic and nonelectrostatic forces. The species distribution and the plausible equilibria for the formation of the species are also presented.


2011 ◽  
Vol 58 (4) ◽  
Author(s):  
Mirosława Kot ◽  
Zofia Olech

Inhibition of jack bean activity by 2,5-dichloro-1,4-benzoquinone (DCBQ) was studied in phosphate buffer, pH 7.0. It was found that DCBQ acted as a strong, time and concentration dependent inactivator of urease. Under the experimental conditions obeyed the terms of pseudo-first-order reaction, urease was totally inactivated. Application of Wilson-Kitz method proved that the urease-DCBQ interaction followed a simple bimolecular process and the presence of intermediate complex was undetectable. The determined second order rate constant of the inactivation was 0.053 (μM min)(-1). Thiols such as l-cysteine, glutathione and dithiothreitol (DTT) protected urease from inhibition by DCBQ but DCBQ-modified urease did not regain its activity after DTT application. The thiol protective studies indicated an essential role of urease thiol(s) in the inhibition. The irreversibility of the inactivation showed that the process was a result of a direct modification of urease thiol(s) by DCBQ (DCBQ chlorine(s) substitution). The decomposition of DCBQ in aqueous solution at natural light exposure was monitored by visible spectrophotometry, determination of the total reducing capacity (Folin-Ciocalteu method) and DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging ability. The DCBQ conversion resulted in a decrease of the inhibition power and was well correlated with the increase of the total reducing capacity and DPPH scavenging ability. These findings were attributed to DCBQ transformation by photolysis and the hydrolysis effect was found to be negligible.


1986 ◽  
Vol 86 (1) ◽  
pp. 57-67
Author(s):  
G. Lelkes ◽  
I. Fodor ◽  
G. Lelkes ◽  
S.R. Hollan

It has previously been shown that reversible intramembrane particle aggregation can be induced in non-haemolysed human erythrocytes. This phenomenon, which can be induced by the cationic dye Acridine Orange, has been further investigated using different experimental conditions that are expected to influence the rate of aggregation of the particles. In addition to the concentration of the dye, the rate of aggregation was also found to be dependent on the extracellular and intracellular pH, as well as on the type of buffer used. While lowering the pH of the Acridine Orange solutions resulted in decreased particle clustering, low intracellular pH increased and elevated intracellular pH decreased particle aggregation. Furthermore, at a given dye concentration and a given pH, Acridine Orange caused more intense aggregation in Tris-buffered saline than in isotonic phosphate buffer or phosphate-buffered saline. Under appropriate conditions Acridine Orange caused significant particle aggregation at concentrations as low as 0.25 mM within 30 s. During this period only discocyte-stomatocyte transformation occurred; neither agglutination nor vesiculation of the erythrocytes could be detected. Treatment of the erythrocytes with Diamide (Serva), which cross-links spectrin via disulphide bridges and thereby reduces lateral diffusion of integral membrane proteins over large distances, had no inhibitory effect on Acridine-Orange-induced particle aggregation. Heating the erythrocytes to 50 degrees C, at which temperature denaturation of spectrin and fragmentation of the erythrocytes occur, and subsequently incubating them in Acridine Orange at room temperature, caused an almost maximal rate of particle aggregation within 10–30 s, without haemolysis. The possible mechanism and significance of the particle aggregation phenomenon are discussed.


2004 ◽  
Vol 287 (3) ◽  
pp. F404-F410 ◽  
Author(s):  
Nicolas Lerolle ◽  
Soline Bourgeois ◽  
Françoise Leviel ◽  
Gaëtan Lebrun ◽  
Michel Paillard ◽  
...  

NaCl reabsorption in the medullary thick ascending limb of Henle (MTALH) contributes to NaCl balance and is also responsible for the creation of medullary interstitial hypertonicity. Despite the presence of angiotensin II subtype 1 (AT1) receptors in both the luminal and the basolateral plasma membranes of MTALH cells, no information is available on the effect of angiotensin II on NaCl reabsorption in MTALH and, furthermore, on angiotensin II-dependent medullary interstitial osmolality. MTALHs from male Sprague-Dawley rats were isolated and microperfused in vitro; transepithelial net chloride absorption ( JCl) as well as transepithelial voltage ( Vte) were measured. Luminal or peritubular 10−11 and 10−10 M angiotensin II had no effect on JCl or Vte. However, 10−8 M luminal or peritubular angiotensin II reversibly decreased both JCl and Vte. The effect of both luminal and peritubular angiotensin II was prevented by the presence of losartan (10−6 M). By contrast, PD-23319, an AT2-receptor antagonist, did not alter the inhibitory effect of 10−8 M angiotensin II. Finally, no additive effect of luminal and peritubular angiotensin II was observed. We conclude that both luminal and peritubular angiotensin II inhibit NaCl absorption in the MTALH via AT1 receptors. Because of intrarenal angiotensin II synthesis, angiotensin II concentration in medullary tubular and interstitial fluids may be similar in vivo to the concentration that displays an inhibitory effect on NaCl reabsorption under the present experimental conditions.


Sign in / Sign up

Export Citation Format

Share Document