scholarly journals Trace Metal Contamination of Bottom Sediments: A Review of Assessment Measures and Geochemical Background Determination Methods

Minerals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 872
Author(s):  
Nicole Nawrot ◽  
Ewa Wojciechowska ◽  
Muhammad Mohsin ◽  
Suvi Kuittinen ◽  
Ari Pappinen ◽  
...  

This paper provides an overview of different methods of assessing the trace metal (TM) contamination status of sediments affected by anthropogenic interference. The geochemical background determination methods are also described. A total of 25 papers covering rivers, lakes, and retention tanks sediments in areas subjected to anthropogenic pressure from the last three years (2019, 2020, and 2021) were analysed to support our examination of the assessment measures. Geochemical and ecotoxicological classifications are presented that may prove useful for sediment evaluation. Among the geochemical indices, several individual pollution indices (CF, Igeo, EF, Pi (SPI), PTT), complex pollution indices (PLI, Cdeg, mCdeg, Pisum, PIAvg, PIaAvg, PIN, PIProd, PIapProd, PIvectorM, PINemerow, IntPI, MPI), and geochemical classifications are compared. The ecotoxicological assessment includes an overview of Sediment Quality Guidelines (SQG) and classifications introduced nationally (as LAWA or modified LAWA). The ecotoxicological indices presented in this review cover individual (ERi) and complex indices (CSI, SPI, RAC, PERI, MERMQ). Biomonitoring of contaminated sites based on plant bioindicators is extensively explored as an indirect method for evaluating pollution sites. The most commonly used indices in the reviewed papers were Igeo, EF, and CF. Many authors referred to ecotoxicological assessment via SQG. Moreover, PERI, which includes the toxic response index, was just as popular. The most recognised bioindicators include the Phragmites and Salix species. Phragmites can be considered for Fe, Cu, Cd, and Ni bioindication in sites, while Salix hybrid cultivars such as Klara may be considered for phytostabilisation and rhizofiltration due to higher Cu, Zn, and Ni accumulation in roots. Vetiveria zizanoides demonstrated resistance to As stress and feasibility for the remediation of As. Moreover, bioindicators offer a feasible tool for recovering valuable elements for the development of a circular economy (e.g., rare earth elements).

Author(s):  
Marjan Esmaeilzadeh ◽  
Elham Mahmoudpuor ◽  
Somayeh Haghighat Ziabari ◽  
Sara Esmaeilzadeh ◽  
Hamideh Aliani ◽  
...  

Abstract In this paper, concentrations of some heavy metals in surficial sediments of the International Anzali Wetland were measured, this wetland is located in northern part of Iran. Sediment pollution levels were examined and analyzed using reliable pollution indices including Pollution Load Index (PLI), Geoaccumulation Index (Igeo) and Enrichment Factor (CF), and finally it was revealed that heavy metal pollution ranged from low to moderated loads in the wetland. According to Sediment Quality Guidelines (SQGs) and Ecological Risk Index (ERI), it was concluded that As and Ni may have significant toxic impacts on aquatic organisms and also according to Effect Range Median (ERM), the toxicity probability of sediments in the Anzali wetland was estimated at 21%.


2019 ◽  
Vol 266 ◽  
pp. 04003 ◽  
Author(s):  
Norpadzlihatun Manap ◽  
Kavitha Sandirasegaran ◽  
Noor Shahifah Syahrom ◽  
Amnorzahira Amir

The primary objective of this study is to determine trace metal contamination in environmental samples obtained from Pahang River and Kelantan River, Malaysia which may help to identify the risk of sustainable dredging in these areas. This research also proceeds to compare the trace metal concentration with the National Water Quality Standards of Malaysia, Interim Canadian Sediment Quality Guidelines and Malaysian Food Act 1983 to determine its limits and risks. Samples of water, sediment, snails and fishes were collected and analyzed for As, Cu, Cd, Cr, Fe, Pb, Ni, Mn, and Hg by using atomic absorption spectrophotometer. It was found that the concentration of trace metals namely As, Cu, Cd, Cr, Pb, Ni, and Hg in river water, sediment, snail and fish samples in Pahang River were lower than the maximum allowable limits, except for Fe and Mn. In Kelantan River, the concentration of trace metals indicating that it is contaminated with Fe, Mn, Pb, Cr, Cu, Hg, and As as all trace metals exceeded the maximum allowable limits. Negative impacts may arise, and the river may contaminate more in future if there is no proper management to tackle this issue during execution of dredging activities.


2021 ◽  
Author(s):  
Gustavo Filemon Costa Lima ◽  
Ciro Couto Bento ◽  
Adolf Heinrich Horn ◽  
Eduardo Duarte Marques ◽  
Hernando Baggio Filho

Abstract The Três Marias Reservoir is the ninth-largest reservoir in Brazil, becoming crucial for national strategic development. However, many anthropic activities may affect the sediment quality, promoting the need for a proper environmental assessment. This research appraised the seasonal influences on the Três Marias Reservoir's sediments geochemistry, elucidating possible anthropogenic impacts. The concentrations of Mg, Al, Ca, Cr, Fe, Co, Cu, Cd, Ti, Mn, Ni, Zn, Ba, Pb, and Organic matter were measured in 78 samples of bottom sediments regarding the two seasons of the area, a dry winter and rainy summer. The Median ± 2 MAD (Median Absolute Deviation) settled the geochemical background for the two seasons. The sediment quality guidelines CONAMA 344/12 highlight the possible adverse ecological effects of pollutants. Hierarchical Clustering Analysis, Geoaccumulation index, and the Pollution Load Index delineated the polluted zones. The Pollution Load Index ranges from 0.25 to 2.28 in the dry season and 0.56 to 2.11 in the rainy season, defining three affected zones in the reservoir. Forestry and agriculture are the probable pollution sources, reaching warning levels that should be considered in further environmental strategies.


2021 ◽  
Vol 232 (2) ◽  
Author(s):  
Zepei Tang ◽  
Robert W. Nairn

AbstractA greenhouse microcosm study investigated the impacts of recovered iron oxyhydroxide mine drainage residuals (MDRs) on phosphorus (P) and trace metal distributions at the sediment layer/water column interface in Grand Lake o’ the Cherokees, a large reservoir receiving waters impacted by both historic mining and current agricultural land uses. Each mesocosm included 5 kg of lake sediment and 20 L of on-site groundwater. Three treatments were examined in triplicate: control (C) with no additions, low MDR (LM) with 0.3 kg added MDR, and high MDR (HM) with 0.9 kg added MDR. In the first 10 days, aqueous soluble reactive phosphorous (SRP) concentrations decreased likely due to colonizing biomass uptake with no significant differences among the three treatments. LM and HM treatments showed delayed peaks in dissolved oxygen (DO) and lesser peaks in chlorophyll-a (Chl-a) concentrations compared to the C treatment, indicating MDR addition may suppress biomass growth. During days 11 to 138, the C treatment demonstrated increasing pH, decreasing ORP, and biomass decay resulting in significantly increased SRP concentrations. In LM and HM treatments, sufficient P sorption by the MDR maintained low SRP concentrations. Although the MDRs are derived from metal-rich mine waters, all aqueous concentrations were below both hardness-adjusted acute and chronic criteria, except for Pb with regard to the chronic criterion. Metal concentrations in sediments were below the Tri-State Mining District (TSMD)–specific Sediment Quality Guidelines (SQGs). MDR additions may serve as stable long-term P sinks to prevent P release from dead biomass, decrease internal P cycling rates, and mitigate eutrophication, with limited concern for trace metal release.


2016 ◽  
Vol 75 (2) ◽  
pp. 236-243 ◽  
Author(s):  
Dragana Petrović ◽  
Dejan Jančić ◽  
Martina Furdek ◽  
Nevenka Mikac ◽  
Slađana Krivokapić

Abstract Skadar Lake is the largest shallow lake in southeastern Europe. It is located within a national park, and is included in the Ramsar List of international important wetlands, so its preservation and protection from pollution is very important. The aim of this study was to investigate bioaccumulation of the ecotoxic metals Cd, Pb and Cr from sediments of Skadar Lake in the aquatic macrophyte Trapa natans L. Samples of sediment and plants were collected at nine locations covering all major water inputs to the lake as well as locations where contamination could be expected. The obtained results indicate that sediments from the Skadar Lake are only locally contaminated with Cd (0.03–1.18 mg kg−1), generally contaminated with Cr (15.8–180 mg kg−1), the concentrations of both elements frequently exceeding sediment quality guidelines, while concentrations of Pb were low (2.7–17.4 mg kg−1). The highest bioaccumulation of all metals from sediment to Trapa natans L. was observed in the root, with accumulation efficiency decreasing in the order Cd > Cr > Pb. Translocation from root to stem was also higher for Cd than for Cr and Pb, while the translocation from stem to leaf was comparable for all three metals. From the three investigated metals Cd showed the highest mobility. The results indicate that Trapa natans L. may be a very promising bioindicator of trace metal contamination in Skadar Lake.


2006 ◽  
Vol 53 (2) ◽  
pp. 175-183 ◽  
Author(s):  
J. Marsalek ◽  
W.E. Watt ◽  
B.C. Anderson

Characteristics of solids recovered from stormwater best management practice (BMP) facilities, including stormwater ponds, constructed wetlands, an infiltration basin, a biofilter, a stormwater treatment clarifier, and three-chamber oil and grit separators were described with respect to their metal chemistry. The reported trace metal concentrations in BMP sediments were assessed against the Ontario Sediment Quality Guidelines. Between 80 to 100% of all samples were marginally-to-intermediately polluted by Cd, Cr, Cu, Fe, Pb, Mn, Ni and Zn. Severe pollution of sediments was noted for Cr (122 μg/g), Cu (151 and 196 μg/g), Mn (1,259 and 1,433 μg/g), and Zn (1,116 μg/g), at several facilities studied, and even higher levels of metals were reported in the literature for certain oil and grit separators. With respect to individual BMPs, the severe pollution was found in sediments from oil and grit separators (for Cd, Cr, Cu, Pb and Zn), the stormwater clarifier sludge (Cu, Mn and Zn), a biofilter (Cu and Mn), an industrial area stormwater pond (Cu only), and a commercial/residential pond (Cr only). Finally, the chemical pollution of pond sediment triggered toxicity testing at some of the facilities studied, and sediment toxicity was confirmed at several sites.


Sign in / Sign up

Export Citation Format

Share Document