scholarly journals Metallogenic Epoch and Tectonic Setting of Saima Niobium Deposit in Fengcheng, Liaoning Province, NE China

Minerals ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 80 ◽  
Author(s):  
Nan Ju ◽  
Yun-Sheng Ren ◽  
Sen Zhang ◽  
Zhong-Wei Bi ◽  
Lei Shi ◽  
...  

The Saima deposit is a newly discovered niobium deposit which is located in the eastern of Liaoning Province, NE China. Its mineralization age and geochemical characteristics are firstly reported in this study. The Nb orebodies are hosted by the grey–brown to grass-green aegirine nepheline syenite. Detailed petrographical studies show that the syenite consists of orthoclase (~50%), nepheline (~30%), biotite (~15%) and minor arfvedsonite (~3%) and aegirine (~2%), with weak hydrothermal alteration dominated by silicification. In situ LA-ICP-MS zircon U-Pb dating indicates that the aegirine nepheline syenite was emplaced in the Late Triassic (229.5 ± 2.2 Ma), which is spatially, temporally and genetically related to Nb mineralization. These aegirine nepheline syenites have SiO2 contents in the range of 55.86–63.80 wt. %, low TiO2 contents of 0.36–0.64 wt. %, P2O5 contents of 0.04–0.11 wt. % and Al2O3 contents of more than 15 wt. %. They are characterized by relatively high (K2O + Na2O) values of 9.72–15.51 wt. %, K2O/Na2O ratios of 2.42–3.64 wt. % and Rittmann indexes (σ = [ω(K2O + Na2O)]2/[ω(SiO2 − 43)]) of 6.84–17.10, belonging to the high-K peralkaline, metaluminous type. These syenites are enriched in large ion lithophile elements (LILEs, e.g., Cs, Rb and Ba) and light rare earth elements (LREEs) and relatively depleted in high field strength elements (HFSEs, e.g., Nb, Zr and Ti) and heavy rare earth elements (HREEs), with transitional elements showing an obvious W-shaped distribution pattern. Based on these geochronological and geochemical features, we propose that the ore-forming intrusion associated with the Nb mineralization was formed under post-collision continental-rift setting, which is consistent with the tectonic regime of post-collision between the North China Craton and Paleo-Asian oceanic plate during the age in Ma for Indosinian (257–205 Ma). Intensive magmatic and metallogenic events resulted from partial melting of lithospheric mantle occurred during the post-collisional rifting, resulting in the development of large-scale Cu–Mo mineralization and rare earth deposits in the eastern part of Liaoning Province.

2020 ◽  
Vol 57 (5) ◽  
pp. 630-646
Author(s):  
Xi-Tao Nie ◽  
Jing-Gui Sun ◽  
Feng-Yue Sun ◽  
Bi-Le Li ◽  
Ya-Jing Zhang ◽  
...  

The Shimadong porphyry Mo deposit is located in eastern Yanbian, in the eastern part of the north margin of the North China craton, northeastern China. Here, we present the whole-rock major and trace elements, zircon U–Pb and Hf isotope data, and molybdenite Re–Os data for the Shimadong deposit. The porphyry was emplaced at 163.7 ± 0.9 Ma and the mineralization at 163.1 ± 0.9 Ma, suggesting that the mineralization was associated with the emplacement of the Shimadong porphyritic monzogranite. The porphyritic monzogranite had high SiO2 (70.09–70.55 wt%) and K2O + Na2O (7.98–8.27 wt%) contents and low MgO (0.51–0.53 wt%), TFeO (2.4–2.47 wt%), CaO (2.19–2.26 wt%), and K2O/Na2O (0.8–0.82) contents. The porphyry was rich in large ion lithophile elements Rb, Ba, K, and Sr, depleted in high-field-strength elements Y, Nb, Ta, P, and Ti, without significant Eu anomaly (δEu = 0.86–1.00), and depleted in heavy rare earth elements with light rare earth elements/heavy rare earth elements = 18.25–20.72 and (La/Yb)N = 27.10–34.67. These features are similar to those of adakitic rocks derived from a thickened lower crust. Zircon εHf(t) values for the porphyritic monzogranite ranged from –19.2 to 6.3, and the two-stage Hf model ages (TDM2) were 2421–811 Ma. These data indicate that the primary magma of the Shimadong porphyritic monzogranite was mainly derived from partial melting of the thickened lower crust consisting of juvenile crust and pre-existing crust. Combined with the results of previous studies, our data suggest that the Shimadong porphyry Mo deposit was emplaced along an active continental margin related to the westward subduction of the paleo-Pacific Plate.


Minerals ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 191 ◽  
Author(s):  
Qun Yang ◽  
Yun-Sheng Ren ◽  
Sheng-Bo Chen ◽  
Guo-Liang Zhang ◽  
Qing-Hong Zeng ◽  
...  

The giant Pulang porphyry Cu (–Mo–Au) deposit in Northwestern Yunnan Province, China, is located in the southern part of the Triassic Yidun Arc. The Cu orebodies are mainly hosted in quartz monzonite porphyry (QMP) intruding quartz diorite porphyry (QDP) and cut by granodiorite porphyry (GP). New LA-ICP-MS zircon U–Pb ages indicate that QDP (227 ± 2 Ma), QMP (218 ± 1 Ma, 219 ± 1 Ma), and GP (209 ± 1 Ma) are significantly different in age; however, the molybdenite Re–Os isochron age (218 ± 2 Ma) indicates a close temporal and genetic relationship between Cu mineralization and QMP. Pulang porphyry intrusions are enriched in light rare-earth elements (LREEs) and large ion lithophile elements (LILEs), and depleted in heavy rare-earth elements (HREEs) and high field-strength elements (HFSEs), with moderately negative Eu anomalies. They are high in SiO2, Al2O3, Sr, Na2O/K2O, Mg#, and Sr/Y, but low in Y, and Yb, suggesting a geochemical affinity to high-silica (HSA) adakitic rocks. These features are used to infer that the Pulang HSA porphyry intrusions were derived from the partial melting of a basaltic oceanic-slab. These magmas reacted with peridotite during their ascent through the mantle wedge. This is interpreted to indicate that the Pulang Cu deposit and associated magmatism can be linked to the synchronous westward subduction of the Ganzi–Litang oceanic lithosphere, which has been established as Late Triassic.


2006 ◽  
Vol 33 (2) ◽  
pp. 71 ◽  
Author(s):  
MÁRCIA APARECIDA DE SANT’ANA BARROS ◽  
ANA MARIA MIZUSAKI ◽  
RICARDO WESKA ◽  
ANDRÉ DE BORBA ◽  
FARID CHEMALE JR ◽  
...  

 The basaltic flows from Tapirapuã Formation are exposed at Tangará da Serra region, 250 km from Cuiabá (MT) and the thickness can reach 310 meters. The basalts range from massive dark gray, with colunar disjunctions at the base to purple amygdaloidal at the top. They are generally fine-grained, however gabroics portions have been identified. In thin section the Tapirapuã basalts show subophitic texture. Chemical analyses in these rocks suggest tholeiitic compositions, within continental tectonic environment. There is an enrichment of light rare earth elements when compared to heavy rare earth elements. The studied samples have low contents of TiO2 and P2O5 being similar to low P2O5 and TiO2 group from Serra Geral Formation (Paraná Basin). Analyses of Sr and Nd isotopes show the following results: 87Sr/86Sr between 0.703 and 0.707, ∈Nd from –0.01 to + 2.32 and model ages (TDM)= (931 to 1.267 Ma). 40Ar / 39Ar geochronology of plagioclase crystals from Tapirapuã basalts presented a plateau age of 206 ± 6 Ma, in agreement with previous ages obtained from Anari and Tapirapuã sub-provinces. This result places the volcanic event at the limit of the Triassic-Jurassic periods, related to the opening of the North Atlantic.


2019 ◽  
Vol 84 (1) ◽  
pp. 65-80 ◽  
Author(s):  
Delia Cangelosi ◽  
Martin Smith ◽  
David Banks ◽  
Bruce Yardley

AbstractThe Huanglongpu carbonatites are located in the north-western part of the Qinling orogenic belt in central China. Calcite carbonatite dykes at the Dashigou open pit are unusual due to their enrichment in heavy rare earth elements (HREE) relative to light rare earth elements (LREE), leading to a flat REE pattern, and in that the majority of dykes have a quartz core. They also host economic concentrations of molybdenite. The calcite carbonatite dykes show two styles of mineralogy according to the degree of hydrothermal reworking, and these are reflected in REE distribution and concentration. The REE in the little-altered calcite carbonatite occur mostly in magmatic REE minerals, mainly monazite-(Ce), and typically have ΣLREE/(HREE+Y) ratios from 9.9 to 17. In hydrothermally altered calcite carbonatites, magmatic monazite-(Ce) is partially replaced to fully replaced by HREE-enriched secondary phases and the rocks have ΣLREE/(HREE+Y) ratios from 1.1 to 3.8. The fluid responsible for hydrothermal REE redistribution is preserved in fluid inclusions in the quartz lenses. The bulk of the quartz lacks fluid inclusions but is cut by two later hydrothermal quartz generations, both containing sulfate-rich fluid inclusions with sulfate typically present as multiple trapped solids, as well as in solution. The estimated total sulfate content of fluid inclusions ranges from 6 to >33 wt.% K2SO4 equivalent. We interpret these heterogeneous fluid inclusions to be the result of reaction of sulfate-rich fluids with the calcite carbonatite dykes. The final HREE enrichment is due to a combination of factors: (1) the progressive HREE enrichment of later magmatic calcite created a HREE-enriched source; (2) REE–SO42– complexing allowed the REE to be redistributed without fractionation; and (3) secondary REE mineralisation was dominated by minerals such as HREE-enriched fluorocarbonates, xenotime-(Y) and churchite-(Y) whose crystal structures tends to favour HREE.


Minerals ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 608 ◽  
Author(s):  
Rui-Gang Zhang ◽  
Wen-Yan He ◽  
Xue Gao

The Daocheng batholith consists of granite, granodiorite and K-feldspar megacrystic granite, which is located in the north Yidun Arc. It is a barren batholith in contrast to plutons of the same age that contain major copper deposits, such as Pulang to the south. In the Daocheng, abundant mafic microgranular enclaves (MMEs) mainly developed within granodiorite and K-feldspar megacrystic granite, which are characterized by quenched apatite, quartz eyes and plagioclase phenocrysts. LA-ICP-MS zircon U–Pb dating of host granodiorite yielded ages ranging from 223 Ma to 210 Ma, with a weighted mean of 215.3 ± 1.8 Ma. Zircons from MMEs yielded ages ranging from 218 Ma to 209 Ma, with a weighted mean of 214.2 ± 1.4 Ma. Geochemical analyses show that granodiorite is high-K, calc-alkaline and I-type, with SiO2 contents ranging from 67.90% to 70.54%. These rocks are metaluminous to marginally peraluminous (A/CNK = 0.98–1.00) and moderately rich in alkalis with K2O ranging from 3.28% to 4.59% and Na2O ranging from 3.18% to 3.20%, with low MgO (1.08%–1.29%), Cr (12.7 ppm–16.8 ppm), Ni (5.19 ppm–6.16 ppm) and Mg# (35–49). The MMEs have relatively low SiO2 contents (56.34%–60.91%), higher Al2O3 contents (16.06%–17.98%), higher MgO and FeO abundances and are metaluminous (A/CNK = 0.82–0.83). The MMEs and host granodiorite are enriched in light rare-earth elements (LREEs) relative to heavy rare-earth elements (HREEs), with slightly negative Eu anomalies, and enriched in Th, U and large ion lithophile elements (LILEs; e.g., K, Rb and Pb), and depleted in high field strength elements (HFSEs; e.g., Nb, Ta, P and Ti), showing affinities typical of arc magmas. The zircon εHf(t) values (−6.28 to −2.33) and ancient two-stage Hf model ages of 1.92 to 1.25 Ga, indicating that the magmas are generally melts that incorporated significant portions of Precambrian crust. The relatively low silica contents and high Mg# values of the MMEs, and the linear patterns of MgO, Al2O3 and Fe2O3 with SiO2 between the MMEs and host granodiorite, showing the formation of MMEs are genetically related to magma mixing. The Daocheng granodiorite is characterized by much lower zircon Ce4+/Ce3+ (average of 3.53) and low fO2 value (average of ∆FMQ = –10.84), whereas the ore-bearing quartz monzonite porphyries in the Pulang copper deposit are characterized by much higher zircon Ce4+/Ce3+ (average of 52.10) and high fO2 value (average of ∆FMQ = 2.8), indicating the ore-bearing porphyry intrusions had much higher fO2 of magma than the ore-barren intrusions considering that the high oxygen fugacity of the magma is conducive to mineralization.


Minerals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1059
Author(s):  
Miao He ◽  
Qing Liu ◽  
Quanlin Hou ◽  
Jinfeng Sun ◽  
Quanren Yan

The South China Block had experienced a significant tectonic transition during the Mesozoic in response to the subduction of the Paleo- and the Pacific Ocean. Large-scale granitic intrusions with massive mineralization are widespread in South China, and their tectonic settings are not defined. The Xitian intrusion is ideal for probing the geodynamic setting and mineralization in South China because they comprise an abundance of microgranular enclaves (MEs) and diverse types of granite associated with mineralization. Age determined by zircon U-Pb dating suggests that the MEs and their host granites are coeval within error, of ca. 152 Ma. The MEs have a similar initial Hf-O isotopic composition as host granites, and the rapid cooling mineral textures indicate that they are autoliths. Geochemical data show that the host granites are high-K, calc-alkaline, and transitional from metaluminous to peraluminous, slightly enriched in light rare earth elements (LREEs) relative to heavy rare earth elements (HREEs), with obvious negative Eu anomalies, belonging to I-type. The Nb/Ta and Zr/Hf ratios indicate the volatile penetrates the magmatic-forming process, and the fluid with abundant volatile could extract metal element effectively from the mantle.


2022 ◽  
pp. 1-35
Author(s):  
Wei Xie ◽  
Qing-Dong Zeng ◽  
Jin-Hui Yang ◽  
Rui Li ◽  
Zhuang Zhang ◽  
...  

Abstract Extensive magmatism in NE China, eastern Central Asian Orogenic Belt, has produced multi-stage granitic plutons and accompanying W mineralization. The Narenwula complex in the southwestern Great Xing’an Range provides important insights into the petrogenesis, geodynamic processes and relationship with W mineralization. The complex comprises granodiorites, monzogranites and granite porphyry. Mafic microgranular enclaves are common in the granodiorites, and have similar zircon U–Pb ages as their host rocks (258.5–253.9 Ma), whereas the W-bearing granitoids yield emplacement ages of 149.8–148.1 Ma. Permian granodiorites are I-type granites that are enriched in large-ion lithophile elements and light rare earth elements, and depleted in high field strength elements and heavy rare earth elements. Both the mafic microgranular enclaves and granodiorites have nearly identical zircon Hf isotopic compositions. The results suggest that the mafic microgranular enclaves and granodiorites formed by the mixing of mafic and felsic magmas. W-bearing granitoids are highly fractionated A-type granites, enriched in Rb, Th, U and Pb, and depleted in Ba, Sr, P, Ti and Eu. They have higher W concentrations and Rb/Sr ratios, and lower Nb/Ta, Zr/Hf and K/Rb ratios than the W-barren granodiorites. These data and negative ϵHf(t) values (–6.0 to –2.1) suggest that they were derived from the partial melting of ancient lower crust and subsequently underwent extreme fractional crystallization. Based on the regional geology, we propose that the granodiorites were generated in a volcanic arc setting related to the subduction of the Palaeo-Asian Ocean, whereas the W-bearing granitoids and associated deposits formed in a post-orogenic extensional setting controlled by the Mongol–Okhotsk Ocean and Palaeo-Pacific Ocean tectonic regimes.


2019 ◽  
Vol 56 (8) ◽  
pp. 870-885 ◽  
Author(s):  
Edward D. Ghent ◽  
Benjamin R. Edwards ◽  
James K. Russell

Basanite lavas near Craven Lake, British Columbia, host a spinel lherzolite xenolith containing cross-cutting veins with pargasitic amphibole (plus minor apatite). The occurrence of vein amphibole in spinel lherzolite is singular for the Canadian Cordillera. The vein crosscuts foliated peridotite and is itself cut by the basanite host. The amphibole is pargasite, which is the most common amphibole composition in mantle peridotite. Rare earth element concentrations in the pargasite are similar to those for mafic alkaline rocks across the northern Cordilleran volcanic province (light rare earth elements ∼50× chondrite and heavy rare earth elements ∼5× chondrite). Two-pyroxene geothermometry suggests that the vein and host peridotite were thermally equilibrated prior to sampling by the basanite magma. Calculated temperature conditions for the sample, assuming equilibration along a model steady-state geotherm, are between 990 and 1050 °C and correspond to a pressure of 0.15 GPa (∼52 ± 2 km depth). These conditions are consistent with the stability limits of mantle pargasite in the presence of a fluid having XH2O < ∼0.1. The pargasite vein and associated apatite provide direct evidence for postaccretion fracture infiltration of CO2–F–H2O-bearing silicate fluids into the Cordilleran mantle lithosphere. Pargasite with low aH2O is in equilibrium with parts per million concentrations of H2O in mantle olivine, potentially lowering the mechanical strength of the lithospheric mantle underlying the Cordillera and making it more susceptible to processes such as lithospheric delamination. Remelting of Cordilleran mantle lithosphere containing amphibole veins may be involved in the formation of sporadic nephelinite found in the Canadian Cordillera.


2017 ◽  
Vol 44 (1) ◽  
pp. 269-286 ◽  
Author(s):  
Azam Entezari Harsini ◽  
Seyed A Mazaheri ◽  
Saeed Saadat ◽  
José F Santos

Abstract This paper addresses U-Pb geochronology, Sr-Nd geochemistry, petrogenesis and tectonic setting in the Gandab volcanic rocks. The Gandab volcanic rocks belong to the Sabzevar zone magmatic arc (northeastern Iran). Petrographically, all the studied volcanic rocks indicate porphyritic textures with phenocrysts of plagioclase, K-feldespar, hornblende, pyroxene, and magnetite which are embedded in a fine to medium grained groundmass. As well, amygdaloidal, and poikilitic textures are seen in some rocks. The standard chemical classifications show that the studied rocks are basaltic trachy andesite, trachy andesite, trachyte, and trachy dacite. Major elements reveal that the studied samples are metaluminous and their alumina saturation index varies from 0.71 to 1.02. The chondrite-normalized rare earth element and mantle-normalized trace element patterns show enrichment in light rare earth elements (LREE) relative to heavy rare earth elements (HREE) and in large ion lithophile elements (LILE) relative to high field strength elements (HFSE). As well they show a slightly negative Eu anomaly (Eu/Eu* = 0.72 – 0.97). The whole-rock geochemistry of the studied rocks suggests that they are related to each other by fractional crystallization. LA-MC-ICP-MS U-Pb analyses in zircon grains from two volcanic rock samples (GCH-119 and GCH-171) gave ages ranging of 5.47 ± 0.22 Ma to 2.44 ± 0.79 Ma, which corresponds to the Pliocene period. In four samples analysed for Sr and Nd isotopes 87Sr/86Sr ratios range from 0.704082 to 0.705931 and εNd values vary between +3.34 and +5. These values could be regarded to as representing mantle derived magmas. Taking into account the comparing rare earth element (REE) patterns, an origin of the parental magmas in enriched lithospheric mantle is suggested. Finally, it is concluded that Pliocene Gandab volcanic rocks are related to the post-collision environment that followed the Neo-Tethys subduction.


Sign in / Sign up

Export Citation Format

Share Document