scholarly journals Trace Elements in Magnetite from the Pagoni Rachi Porphyry Prospect, NE Greece: Implications for Ore Genesis and Exploration

Minerals ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 725 ◽  
Author(s):  
Constantinos Mavrogonatos ◽  
Panagiotis Voudouris ◽  
Jasper Berndt ◽  
Stephan Klemme ◽  
Federica Zaccarini ◽  
...  

Magnetite is a common accessory phase in various types of ore deposits. Its trace element content has proven to have critical implications regarding petrogenesis and as guides in the exploration for ore deposits in general. In this study we use LA-ICP-MS (laser ablation-inductively coupled plasma-mass spectrometry) analyses of trace elements to chemically characterize magnetite from the Pagoni Rachi Cu–Mo–Re–Au porphyry-style prospect, Thrace, northern Greece. Igneous magnetite mostly occurs as euhedral grains, which are commonly replaced by hematite in fresh to propylitic-altered granodiorite porphyry, whereas, hydrothermal magnetite forms narrow veinlets or is disseminated in sodic/potassic-calcic altered (albite + K-feldspar + actinolite + biotite + chlorite) granodiorite porphyry. Magnetite is commonly associated with chalcopyrite and pyrite and locally exhibits martitization. Laser ablation ICP-MS analyses of hydrothermal magnetite yielded elevated concentrations in several trace elements (e.g., V, Pb, W, Mo, Ta, Zn, Cu, and Nb) whereas Ti, Cr, Ni, and Sn display higher concentration in its magmatic counterpart. A noteworthy enrichment in Mo, Pb, and Zn is an unusual feature of hydrothermal magnetite from Pagoni Rachi. High Si, Al, and Ca values in a few analyses of hydrothermal magnetite imply the presence of submicroscopic or nano-inclusions (e.g., chlorite, and titanite). The trace element patterns of the hydrothermal magnetite and especially the decrease in its Ti content reflect an evolution from the magmatic towards the hydrothermal conditions under decreasing temperatures, which is consistent with findings from analogous porphyry-style deposits elsewhere.

Author(s):  
John D. Greenough ◽  
Alejandro Velasquez ◽  
Mohamed Shaheen ◽  
Joel Gagnon ◽  
Brian J. Fryer ◽  
...  

Trace elements in native gold provide a “fingerprint” that tends to be unique to individual gold deposits. Fingerprinting can distinguish gold sources and potentially yield insights into geochemical processes operating during gold deposit formation. Native gold grains come from three historical gold ore deposits; Hollinger, McIntyre (quartz-vein ore), and Aunor near Timmins, Ontario, at the western end of the Porcupine gold camp and the south-western part of the Abitibi greenstone belt. Laser-ablation, inductively-coupled plasma mass spectrometry (LA ICP MS) trace element concentrations were determined on 20 to 25 µm wide, 300 µm long rastor trails in ~ 60 native gold grains. Analyses used Ag as an internal standard with Ag and Au determined by a scanning electron microscope with an energy dispersive spectrometer. The London Bullion Market AuRM2 reference material served as the external standard for 21 trace element analytes (Al, As, Bi, Ca, Cr, Cu, Fe, Mg, Mn, Ni, Pb, Pd, Pt, Rh, Sb, Se, Si, Sn, Te, Ti, Zn; Se generally below detection in samples). Trace elements in native gold associate according to Goldschmidt’s classification of elements strongly suggesting that element behavior in native Au is not random. Such element behavior suggests that samples from each Timmins deposit formed under similar but slightly variable geochemical conditions. Chalcophile and siderophile elements provide the most compelling fingerprints of the three ore deposits and appear to be mostly in solid solution in Au. Lithophile elements are not very useful for distinguishing these deposits and element ABSTRACT CUT OFF BY SOFTWARE


2011 ◽  
Vol 17 (S2) ◽  
pp. 566-567 ◽  
Author(s):  
A Netting ◽  
J Payne ◽  
B Wade ◽  
T Raimondo

Extended abstract of a paper presented at Microscopy and Microanalysis 2011 in Nashville, Tennessee, USA, August 7–August 11, 2011.


2021 ◽  
pp. geochem2020-043
Author(s):  
Madison A. Schmidt ◽  
Matthew I. Leybourne ◽  
Jan M. Peter ◽  
Duane C. Petts ◽  
Simon E. Jackson ◽  
...  

There is increasing acceptance of the presence of variable magmatic contributions to the mineralizing fluids in the formation of volcanogenic massive sulfide (VMS) deposits. The world-class Windy Craggy Cu-Co-Au deposit (>300 MT @ 2.12 wt.% Cu) in northwestern British Columbia is of interest because, unlike most VMS deposits, quarts fluid inclusions from within the deposit range from relatively low to intermediate salinity (most 6-16 wt.% equivalent). In this study we used an excimer (193 nm) laser ablation system interfaced to a quadrupole inductively coupled plasma mass spectrometer to quantify key metals and metalloids that are considered by many to be indicative of magmatic contributions to hydrothermal ore deposits. Although LA-ICP-MS signals from these low-salinity inclusions are highly transient, we were able to quantify Na, Mg, K, Ca, Mn, Fe, Co, Cu, Zn, Sr, Sn, Ba, Ce, Pb and Bi consistently – of the 34 elements that were monitored. Furthermore, Cl, Sb, Cd, Mo, Rb, Br, and As were also measured in a significant number of inclusions. Comparison of the fluid inclusion chemistry with unaltered and altered mafic volcanic and sedimentary rocks and mineralized samples from the deposit indicate that enrichment in the main ore metals (Cu, Zn, Fe, Pb) in the inclusions reflects that of the altered rocks and sulfides. Metals and metalloids that may indicate a magmatic contribution typically show much greater enrichments in the fluid inclusions much greater over the host rocks at the same Cu concentration; in particular Bi, Sn and Sb are significantly elevated when compared to the host rock samples. These data are consistent with the ore-forming fluids at Windy Craggy having a strong magmatic contribution.


2017 ◽  
Vol 32 (10) ◽  
pp. 2003-2010 ◽  
Author(s):  
Keita Itano ◽  
Tsuyoshi Iizuka

Oxide interference can be problematic for trace element and isotopic analyses using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS).


Minerals ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 634
Author(s):  
Shitou Wu ◽  
Yadong Wu ◽  
Yueheng Yang ◽  
Hao Wang ◽  
Chao Huang ◽  
...  

Olivine forsterite contents [Fo = 100 × Mg/(Mg + Fe) in mol%] and minor–trace element concentrations can aid our understanding of the Earth’s mantle. Traditionally, these data are obtained by electron probe microanalysis for Fo contents and minor elements, and then by laser ablation–inductively coupled plasma–mass spectrometry (LA–ICP–MS) for trace elements. In this study, we demonstrate that LA–ICP–MS, with a simplified 100% quantification approach, allows the calculation of Fo contents simultaneously with minor–trace elements. The approach proceeds as follows: (1) calculation of Fo contents from measured Fe/Mg ratios; (2) according to the olivine stoichiometric formula [(Mg, Fe)2SiO4] and known Fo contents, contents of Mg, Fe and Si can be computed, which are used as internal standards for minor–trace element quantification. The Fo content of the MongOLSh 11-2 olivine reference material is 89.55 ± 0.15 (2 s; N = 120), which agrees with the recommended values of 89.53 ± 0.05 (2 s). For minor–trace elements, the results matched well with the recommended values, apart from P and Zn data. This technique was applied to olivine phenocrysts in the Lijiang picrites from the Emeishan large igneous province. The olivine compositions suggest that the Lijiang picrites have a peridotitic mantle source.


Sign in / Sign up

Export Citation Format

Share Document