scholarly journals Britholite Group Minerals from REE-Rich Lithologies of Keivy Alkali Granite—Nepheline Syenite Complex, Kola Peninsula, NW Russia

Minerals ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 732 ◽  
Author(s):  
Dmitry Zozulya ◽  
Lyudmila Lyalina ◽  
Ray Macdonald ◽  
Bogusław Bagiński ◽  
Yevgeny Savchenko ◽  
...  

The Keivy alkali granite-nepheline syenite complex, Kola Peninsula, NW Russia, contains numerous associated Zr-REE-Y-Nb occurrences and deposits, formed by a complex sequence of magmatic, late-magmatic, and post-magmatic (including pegmatitic, hydrothermal, and metasomatic) processes. The REE-rich lithologies have abundant (some of economic importance) and diverse britholite group minerals. The REE and actinides distribution in host rocks indicates that the emanating fluids were alkaline, with significant amounts of F and CO2. From chemical studies (REE and F variations) of the britholites the possible fluid compositions in different lithologies are proposed. Fluorbritholite-(Y) and britholite-(Y) from products of alkali granite (mineralized granite, pegmatite, quartzolite) formed under relatively high F activity in fluids with low CO2/H2O ratio. The highest F and moderate CO2 contents are characteristic of fluid from a mineralized nepheline syenite, resulting in crystallization of fluorbritholite-(Ce). Britholite group minerals (mainly fluorcalciobritholite and ‘calciobritholite’) from a nepheline syenite pegmatite formed from a fluid with composition changing from low F and high CO2 to moderate F and CO2. An extremely high F content is revealed for metasomatizing fluids emanating from alkali granitic magma and which affected the basic country rocks. The dominant substitution scheme for Keivy britholites is REE3+ + Si4+ = Ca2+ + P5+, showing the full range of ‘britholite’ and ‘calciobritholite’ compositions up to theoretical apatite.

Author(s):  
Lyalina L. М. ◽  
◽  
Kadyrova G. I. ◽  
Selivanova E. A. ◽  
Zolotarev A. A. jr. ◽  
...  

1989 ◽  
Vol 26 (10) ◽  
pp. 2032-2043 ◽  
Author(s):  
Christian V. Pitre ◽  
Jean M. Richardson

The Duck Pond tin prospect is a vein- and strata-bound cassiterite prospect that is located 2 km west of the East Kemptville open-pit tin mine in southwestern Nova Scotia. The host rocks of the Duck Pond prospect are interbedded metawacke and meta-argillite that belong to the transition unit of the Meguma Group. These rocks contain quartz, sericite, chlorite, hematite, rutile, manganese oxides, feldspar, and porphyroblastic garnet, but not detrital cassiterite. The prospect is structurally controlled and contains several cross-cutting vein sets that have alkalic, chloritic, or argillic alteration assemblages. Muscovite is the main indicator mineral for alkalic alteration and occurs in veins that contain anorthoclase or quartz. Cassiterite is associated with chloritic alteration and occurs as subhedral to euhedral grains, acicular needles, and colloform layers in veins in meta-argillite and as strata-bound disseminations in metawacke. Most cassiterite precipitated under externally buffered conditions with respect to oxygen. Fe, Cu, Zn, and As sulphide minerals and quartz were deposited during argillic alteration. Late-stage processes such as recrystallization, sulphidation, and oxidation also occurred. Chalcopyrite is replaced by bornite and covellite; pyrite is replaced by marcasite.Unlike the F-rich East Kemptville deposit, fluorine-rich and tin-sulphide minerals are not present in the Duck Pond prospect. Trace tourmaline, absent at East Kemptville, is found at Duck Pond. However, the source of tin-mineralizing fluids at Duck Pond and East Kemptville was likely the granitic magma of the Davis Lake complex, which also hosts the East Kemptville deposit. From the mineral assemblages and textural relationships, it appears that as the temperature dropped from 425–405 °C to less than 200 °C at Duck Pond, the pH dropped from 5.2 to no lower than 3. Log [Formula: see text] dropped from at least −19 to −43. Log [Formula: see text] rose from < −15 to > −10. Cassiterite precipitated at the higher ends of the temperature and pH ranges and the lower end of the log [Formula: see text] range.


Lithosphere ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 590-602
Author(s):  
Anthony F. Pivarunas ◽  
Joseph G. Meert

Abstract The McClure Mountain–Iron Mountain igneous complex is an alkalic intrusive center in the northern Wet Mountains of southern Colorado. It was emplaced in early Cambrian time into gneissic/granitic 1.75–1.45 Ga Proterozoic host rocks. Numerous dikes are associated with the complex, primarily along the western side. Although the main intrusive nepheline-syenite body is well dated, the ages of the surrounding dikes are poorly known. Crosscutting relationships and poorly defined K-Ar dates suggest that the dikes are younger than the main intrusion. Paleomagnetic samples were collected from dikes associated with the McClure Mountain igneous complex. Geochronologic samples were also collected from two dikes sampled for their paleomagnetism. We obtained U-Pb zircon ages of 526 ± 8 Ma for a lamprophyric extracomplex dike and 483 ± 2 Ma for a trachytic extracomplex dike. These ages suggest either multistage or protracted dike intrusion around the ca. 524 Ma McClure Mountain complex. Our paleomagnetic data are consistent with previously published results. Dikes of the complex primarily exhibit southeast and shallow paleomagnetic directions, with variable declinations. Results from several baked contact tests indicate that the magnetizations are secondary. A steeply inclined magnetization is pervasive and was acquired over a protracted interval from late Laramide time to the present day.


2004 ◽  
Vol 31 (10) ◽  
pp. 1027 ◽  
Author(s):  
Xiongwen Chen ◽  
Kunshan Gao

Photosynthetic uptake of inorganic carbon and regulation of photosynthetic CO2 affinity were investigated in Skeletonema costatum (Grev.) Cleve. The pH independence of K1/2(CO2) values indicated that algae grown at either ambient (12 μmol L–1) or low (3 μmol L–1) CO2 predominantly took up CO2 from the medium. The lower pH compensation point (9.12) and insensitivity of photosynthetic rate to di-isothiocyanatostilbene disulfonic acid (DIDS) indicated that the alga had poor capacity for direct HCO3– utilisation. Photosynthetic CO2 affinity is regulated by the concentration of CO2 rather than HCO3–, CO32– or total dissolved inorganic carbon (DIC) in the medium. The response of photosynthetic CO2 affinity to changes in CO2 concentration was most sensitive within the range 3–48 μmol L–1 CO2. Light was required for the induction of photosynthetic CO2 affinity, but not for its repression, when cells were shifted between high (126 μmol L–1) and ambient (12 μmol L–1) CO2. The time needed for cells grown at high CO2 (126 μmol L–1) to fully develop photosynthetic CO2 affinity at ambient CO2 was approximately 2 h, but acclimation to low or very low CO2 levels (3 and 1.3 μmol L–1, respectively) took more than 10 h. Cells grown at low CO2 (3 μmol L–1) required approximately 10 h for repression of all photosynthetic CO2 affinity when transferred to ambient or high CO2 (12 or 126 μmol L–1, respectively), and more than 10 h at very high CO2 (392 μmol L–1).


2002 ◽  
Vol 29 (3) ◽  
pp. 201 ◽  
Author(s):  
Hans C. P. Matthijs ◽  
Robert Jeanjean ◽  
Nataliya Yeremenko ◽  
Jef Huisman ◽  
Francoise Joset ◽  
...  

Pseudo-reversion of the high-CO2 requiring phenotype of the NADH dehydrogenase type 1-impaired mutant of Synechocystis PCC6803, strain M55, by salt stress coincides with partial restoration of PSI-driven cyclic electron transfer. In M55, the complete family of D proteins (D1–D6) that are needed for electron transfer through the complex is lacking. Adaptation to salt stress requires de novo synthesis of full-length 47-kDa ferredoxin-NADP+ reductase (FNR). A mutant created in the M55 background, which only expresses truncated chloroplast 37-kDa FNR cannot adapt to salt stress and refrains from growth in low CO2. A special feature of FNR in cyanobacteria is the relatively high molecular mass of 44–48 kDa. A positively charged extended N-terminal domain of the cyanobacterial enzyme defines the extra mass. The extension likely plays a key role in the salt-stress inducible enhancement of PSI-driven cyclic electron transfer, and in the pseudo-reversion of the high-CO2 requiring phenotype of M55. Data acquired with several other cyanobacteria and the oxychlorobacterium Prochlorothrix hollandica contributed to the present hypothesis. It proposes that FNR is involved in regulation of inducible and transient PSI cyclic electron transfer in cyanobacteria via a thylakoid surface charge and conditional-proteolysis steered mechanism.


1996 ◽  
Vol 23 (1) ◽  
pp. 63 ◽  
Author(s):  
AB Samarakoon ◽  
RM Gifford

Cotton (Gossypium hirsutum cv. Sicala 34) was grown at 352 ('low CO2') or 710 ('high CO2') μL L-1 atmospheric CO2 in continuously wet soil, or in drying soil, or in drying soil re-wetted after plant wilting. In wet soil, the approximately 15% reduction in transpiration per unit leaf area owing to high CO2 was only half that for other species, whereas effects on growth and leaf area were relatively larger. Consequently, water use per plant was 45-50% higher for high CO2 plants in contrast to other species for which the rate of water use is either the same or lower in high CO2. Greater plant water use early in a drying cycle caused the soil to dry faster under high CO2 than under low CO2. The addition of the consequential greater water stress at high CO2 in drying soil to the direct CO2 effect on stomata caused the transpiration rate of high CO2 plants to fall by up to 60% as the soil dried relative to plants drying at low CO2. After re-wetting the dry soil, the reduction in transpiration rate at high CO2 returned within hours to the value of 15% seen in wet soil. The results were inconsistent with the idea that water deficits increase the sensitivity of stomatal aperture to CO2. Other consequences of drier soil under high CO2 compared with low CO2 were: (a) unlike in many other species, in cotton, the relative growth enhancement by high CO2 is not higher under drying soil compared with wet soil owing to the opposite effect on soil water content; and (b) the increased water-use efficiency in drying soil relative to wet soil was greater in high CO2 plants than in low CO2. The confounding of indirect effects of soil water with the direct CO2 effects may explain the wide variability of literature reports about CO2 effects on stomatal conductance and water use.


2009 ◽  
Vol 36 (11) ◽  
pp. 893 ◽  
Author(s):  
Olavi Kiirats ◽  
Jeffrey A. Cruz ◽  
Gerald E. Edwards ◽  
David M. Kramer

It was previously shown that photosynthetic electron transfer is controlled under low CO2 via regulation of the chloroplast ATP synthase. In the current work, we studied the regulation of photosynthesis under feedback limiting conditions, where photosynthesis is limited by the capacity to utilise triose-phosphate for synthesis of end products (starch or sucrose), in a starch-deficient mutant of Nicotiana sylvestris Speg. & Comes. At high CO2, we observed feedback control that was progressively reversed by increasing O2 levels from 2 to 40%. The activity of the ATP synthase, probed in vivo by the dark-interval relaxation kinetics of the electrochromic shift, was proportional to the O2-induced increases in O2 evolution from PSII (JO2), as well as the sum of Rubisco oxygenation (vo) and carboxylation (vc) rates. The altered ATP synthase activity led to changes in the light-driven proton motive force, resulting in regulation of the rate of plastoquinol oxidation at the cytochrome b6f complex, quantitatively accounting for the observed control of photosynthetic electron transfer. The ATP content of the cell decreases under feedback limitation, suggesting that the ATP synthesis was downregulated to a larger extent than ATP consumption. This likely resulted in slowing of ribulose bisphosphate regeneration and JO2). Overall, our results indicate that, just as at low CO2, feedback limitations control the light reactions of photosynthesis via regulation of the ATP synthase, and can be reconciled with regulation via stromal Pi, or an unknown allosteric affector.


1989 ◽  
Vol 16 (3) ◽  
pp. 251 ◽  
Author(s):  
TL Setter ◽  
I Waters ◽  
I Wallace ◽  
P Bhekasut ◽  
H Greenway

Growth and photosynthetic response of lowland rice following complete submergence is related to the concentration of CO2 dissolved in floodwater. Submergence of plants in stagnant solution at low CO2 concentration or solution gassed with air at 0.03 kPa CO2 (equilibrium of 0.01 mol m-3 dissolved CO2) decreased carbohydrates, and little or no growth occurred. Plants submerged in solutions gassed with 3-20 kPa CO2 in air (equilibrium of 0.9-6 mol m-3 CO2) showed at most small decreases in carbohydrates, and growth was up to 100% of the non-submerged plants. At pH 7.5, there was little net photosynthetic O2 evolution by detached submerged leaves even at high HCO3- concentrations, which suggests that these rice leaves could utilise only CO2 and not HCO3-. At pH 6.5, O2 evolution in solutions in equilibrium with 7.4 kPa CO2 was 3-4 fold higher than in solutions in equilibrium with 0.6 kPa CO2. Photorespiration was indicated by a decrease in the rate of net O2 evolution with increasing external O2. In stagnant solutions this reduction of O2 evolution was pronounced; at a CO2 concentration of 0.25 mol m-3 net O2 evolution ceased when the O2 concentration in the water had reached only 0.125 mol m-3. The requirement of photosynthesis for a combination of high CO2 concentrations and low external O2 was presumably due to slow diffusion of these gases in the unstirred layer of solution around the leaves.


Sign in / Sign up

Export Citation Format

Share Document