scholarly journals Effect of Extraction Solvent/Technique on the Antioxidant Activity of Selected Medicinal Plant Extracts

Molecules ◽  
2009 ◽  
Vol 14 (6) ◽  
pp. 2167-2180 ◽  
Author(s):  
Bushra Sultana ◽  
Farooq Anwar ◽  
Muhammad Ashraf

Theeffects of four extracting solvents [absolute ethanol, absolute methanol, aqueous ethanol (ethanol: water, 80:20 v/v) and aqueous methanol (methanol: water, 80:20 v/v)] and two extraction techniques (shaking and reflux) on the antioxidant activity of extracts of barks of Azadirachta indica, Acacia nilotica, Eugenia jambolana, Terminalia arjuna, leaves and roots of Moringa oleifera, fruit of Ficus religiosa,and leaves of Aloe barbadensis were investigated. The tested plant materials contained appreciable amounts of total phenolic contents (0.31-16.5 g GAE /100g DW), total flavonoid (2.63-8.66 g CE/100g DW); reducing power at 10 mg/mL extract concentration (1.36-2.91), DPPH. scavenging capacity (37.2-86.6%), and percent inhibition of linoleic acid (66.0-90.6%). Generally higher extract yields, phenolic contents and plant material antioxidant activity were obtained using aqueous organic solvents, as compared to the respective absolute organic solvents. Although higher extract yields were obtained by the refluxing extraction technique, in general higher amounts of total phenolic contents and better antioxidant activity were found in the extracts prepared using a shaker.

2008 ◽  
Vol 7 (1) ◽  
Author(s):  
Bimo Budi Santoso

<strong><em>Flavanoid, steroid, and terpenoid contents of 20 Manokwari medicinal plants were analyzed.  The antioxidant activity, total phenolic contents and antitumor activity of 20 Manokwari medicinal plants were also evaluated. The result shows that 83% positif to flavanoid test, 59% positif to terpenoid test and only 25% positif steroid. Antioxidant activity and total phenolic contents evaluated using Ferric Thiocianate (FTC) and Folin-Ciocalteu methods respectively. Antioxidant activity and total phenolic contents of medicinal plants were extracted by the traditional method, boiling in water and also in 80% methanol. Twenty plants evaluated in both exstracts have significantly varies of antioxidant activities and phenolic contents,  A significant and linier correlation coefficient between the antioxidant activity and the total phenolic content was found in both aqueous (R<sup>2</sup>= 0,77) and methanol (R<sup>2</sup> = 0,85). Antitumor activity was tested using cell maurine P-388 and only 2 of medicinal plants are active to inhibit cell maurine P-388. Comparing extraction efficiency of the two methods, the methanol extracted phenolic compounds more efficiently, and antioxidant activity of the extract was higher.</em></strong>


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Muhammad Asam Raza ◽  
Rukhsana Kausar ◽  
Faraz Ali Rana ◽  
Muhammad Danish ◽  
Durre Shahwar ◽  
...  

This study was designed to evaluate the antioxidant potential ofLoranthus pulverulentus. Stem bark, leaves, and seeds ofLoranthus pulverulentuswere extracted in methanol:water (90 : 10) and partitioned with n-hexane, chloroform, ethyl acetate, and n-butanol successively using partition chromatography. Total phenolic contents and antioxidant potential were checked using standard protocols. Total phenolic contents of all extracts were determined, using Folin–Ciocalteu reagent, and ranged between 151 ± 2.1 and 396 ± 1.6 for stem bark, 137 ± 0.9 and 430 ± 2.2 for, and 39 ± 0.6 and 231 ± 1.7 for seeds. The antioxidant potential of extracts was evaluated; namely, DPPH, FRAP, and total antioxidant models. The ethyl acetate extract of stem-bark, leaves, and seeds showed the highest activity in DPPH (94.5 ± 2.1%, 96.30 ± 0.9%, and 92.30 ± 1.1%, IC5015.9 ± 0.5 μg, 14.5 ± 0.8, and 102.7 ± 1.3, resp.), FRAP (7.7 ± 0.6, 7.5 ± 0.7 and 6.6 ± 0.7, resp.), and total antioxidant (0.95 ± 0.09, 1.19 ± 0.09, and 0.686 ± 0.08, resp.). Strong correlations were observed between total phenols versus total antioxidant activity, DPPH, and FRAP withR2values ranging from 0.8185 to 0.9951 (stem-bark), 0.6728 to 0.8648 (leaves), and 0.8658 to 0.9910 (seed) which indicated that phenolic contents are the major constituents responsible for antioxidant activity.


2015 ◽  
Vol 354 (1) ◽  
pp. 265-272 ◽  
Author(s):  
Suwimon Siriwong ◽  
Adisai Rungvichaniwat ◽  
Pairote Klinpituksa ◽  
Khalid Hamid Musa ◽  
Aminah Abdullah

Sign in / Sign up

Export Citation Format

Share Document