scholarly journals Flavones as Quorum Sensing Inhibitors Identified by a Newly Optimized Screening Platform Using Chromobacterium violaceum as Reporter Bacteria

Molecules ◽  
2016 ◽  
Vol 21 (9) ◽  
pp. 1211 ◽  
Author(s):  
Malena Skogman ◽  
Sonja Kanerva ◽  
Suvi Manner ◽  
Pia Vuorela ◽  
Adyary Fallarero
2020 ◽  
Vol 21 (24) ◽  
pp. 9512
Author(s):  
Alfredo Fuentes-Gutiérrez ◽  
Everardo Curiel-Quesada ◽  
José Correa-Basurto ◽  
Alberto Martínez-Muñoz ◽  
Alicia Reyes-Arellano

Quorum sensing is a communication system among bacteria to sense the proper time to express their virulence factors. Quorum sensing inhibition is a therapeutic strategy to block bacterial mechanisms of virulence. The aim of this study was to synthesize and evaluate new bioisosteres of N-acyl homoserine lactones as Quorum sensing inhibitors in Chromobacterium violaceum CV026 by quantifying the specific production of violacein. Five series of compounds with different heterocyclic scaffolds were synthesized in good yields: thiazoles, 16a–c, thiazolines 17a–c, benzimidazoles 18a–c, pyridines 19a–c and imidazolines 32a–c. All 15 compounds showed activity as Quorum sensing inhibitors except 16a. Compounds 16b, 17a–c, 18a, 18c, 19c and 32b exhibited activity at concentrations of 10 µM and 100 µM, highlighting the activity of benzimidazole 18a (IC50 = 36.67 µM) and 32b (IC50 = 85.03 µM). Pyridine 19c displayed the best quorum sensing inhibition activity (IC50 = 9.66 µM). Molecular docking simulations were conducted for all test compounds on the Chromobacterium violaceum CviR protein to gain insight into the process of quorum sensing inhibition. The in-silico data reveal that all 15 the compounds have higher affinity for the protein than the native AHL ligand (1). A strong correlation was found between the theoretical and experimental results.


2013 ◽  
Vol 03 (04) ◽  
pp. 93-99 ◽  
Author(s):  
Kazuhiro Ooka ◽  
Atsushi Fukumoto ◽  
Tomoe Yamanaka ◽  
Kanako Shimada ◽  
Ryo Ishihara ◽  
...  

2020 ◽  
Vol 43 (1) ◽  
pp. 179-183 ◽  
Author(s):  
Toshiko Ohta ◽  
Atsushi Fukumoto ◽  
Yohei Iizaka ◽  
Fumio Kato ◽  
Yasumasa Koyama ◽  
...  

2020 ◽  
Vol 26 ◽  
Author(s):  
Madison Tonkin ◽  
Shama Khan ◽  
Mohmmad Younus Wani ◽  
Aijaz Ahmad

: Quorum sensing is defined as cell to cell communication between microorganisms, which enables microorganisms to behave as multicellular organisms. Quorum sensing enables many collaborative benefits such as synchronisation of virulence factors and biofilm formation. Both quorum sensing as well as biofilm formation encourage the development of drug resistance in microorganisms. Biofilm formation and quorum sensing are causally linked to each other and play role in the pathogenesis of microorganisms. With the increasing drug resistance against the available antibiotics and antifungal medications, scientists are combining different options to develop new strategies. Such strategies rely on the inhibition of the communication and virulence factors rather than on killing or inhibiting the growth of the microorganisms. This review encompasses the communication technique used by microorganisms, how microorganism resistance is linked to quorum sensing and various chemical strategies to combat quorum sensing and thereby drug resistance. Several compounds have been identified as quorum sensing inhibitors and are known to be effective in reducing resistance as they do not kill the pathogens but rather disrupt their communication. Natural compounds have been identified as anti-quorum sensing agents. However, natural compounds present several related disadvantages. Therefore, the need for the development of synthetic or semi-synthetic compounds has arisen. This review argues that anti-quorum sensing compounds are effective in disrupting quorum sensing and could therefore be effective in reducing microorganism drug resistance.


Author(s):  
Nikayla Batohi ◽  
Shabir Ahmad Lone ◽  
Musa Marimani ◽  
Mohmmad Younus Wani ◽  
Abdullah Saad Al-Bogami ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document