Quorum Sensing – A Stratagem for Conquering Multi-Drug Resistant Pathogens

2020 ◽  
Vol 26 ◽  
Author(s):  
Madison Tonkin ◽  
Shama Khan ◽  
Mohmmad Younus Wani ◽  
Aijaz Ahmad

: Quorum sensing is defined as cell to cell communication between microorganisms, which enables microorganisms to behave as multicellular organisms. Quorum sensing enables many collaborative benefits such as synchronisation of virulence factors and biofilm formation. Both quorum sensing as well as biofilm formation encourage the development of drug resistance in microorganisms. Biofilm formation and quorum sensing are causally linked to each other and play role in the pathogenesis of microorganisms. With the increasing drug resistance against the available antibiotics and antifungal medications, scientists are combining different options to develop new strategies. Such strategies rely on the inhibition of the communication and virulence factors rather than on killing or inhibiting the growth of the microorganisms. This review encompasses the communication technique used by microorganisms, how microorganism resistance is linked to quorum sensing and various chemical strategies to combat quorum sensing and thereby drug resistance. Several compounds have been identified as quorum sensing inhibitors and are known to be effective in reducing resistance as they do not kill the pathogens but rather disrupt their communication. Natural compounds have been identified as anti-quorum sensing agents. However, natural compounds present several related disadvantages. Therefore, the need for the development of synthetic or semi-synthetic compounds has arisen. This review argues that anti-quorum sensing compounds are effective in disrupting quorum sensing and could therefore be effective in reducing microorganism drug resistance.

Author(s):  
Ahmad Nasser ◽  
Mohammad Mehdi Soltan Dallal ◽  
Shiva Jahanbakhshi ◽  
Taher Azimi ◽  
Leila Nikouei

: The formation of Staphylococcus aureus biofilm causes significant infections in the human body. Biofilm forms through the aggregation of bacterial species and brings about many complications. It mediates drug resistance and persistence and facilitates the recurrence of infection at the end of antimicrobial therapy. Biofilm formation goes through a series of steps to complete, and any interference in these steps can disrupt its formation. Such interference may occur at any stage of biofilm production, including attachment, monolayer formation, and accumulation. Interfering agents can act as quorum sensing inhibitors and interfere in the functionality of quorum sensing receptors, attachment inhibitors and affect the cell hydrophobicity. Among these inhibiting strategies, attachment inhibitors could serve as the best agents against biofilm formation. If pathogens abort the attachment, the following stages of biofilm formation, e.g., accumulation and dispersion, will fail to materialize. Inhibition at this stage leads to suppression of virulence factors and invasion. One of the best-known inhibitors is a chelator that collects metal, Fe+, Zn+, and magnesium critical for biofilm formation. These influential factors in the binding and formation of biofilm are investigated, and the coping strategy is discussed. This review examines the stages of biofilm formation and determines what factors interfere in the continuity of these steps. Finally, the inhibition strategies are investigated, reviewed, and discussed. Keywords: Biofilm, Staphylococcus, Biofilm inhibitor, Dispersion, Antibiofilm agent, EPS, PIA.


Molecules ◽  
2019 ◽  
Vol 24 (10) ◽  
pp. 1950 ◽  
Author(s):  
Arshad Mehmood ◽  
Guorong Liu ◽  
Xin Wang ◽  
Guannan Meng ◽  
Chengtao Wang ◽  
...  

The theory of persisting independent and isolated regarding microorganisms is no longer accepted. To survive and reproduce they have developed several communication platforms within the cells which facilitates them to adapt the surrounding environmental changes. This cell-to-cell communication is termed as quorum sensing; it relies upon the cell density and can stimulate several traits of microbes including biofilm formation, competence, and virulence factors secretion. Initially, this sophisticated mode of communication was discovered in bacteria; later, it was also confirmed in eukaryotes (fungi). As a consequence, many quorum-sensing molecules and inhibitors have been identified and characterized in various fungal species. In this review article, we will primarily focus on fungal quorum-sensing molecules and the production of inhibitors from fungal species with potential applications for combating fungal infections.


2013 ◽  
Vol 825 ◽  
pp. 107-110
Author(s):  
Sören Bellenberg ◽  
Robert Barthen ◽  
Mario Vera ◽  
Nicolas Guiliani ◽  
Wolfgang Sand

A functional luxIR-type Quorum Sensing (QS) system is present in Acidithiobacillus ferrooxidans. However, cell-cell communication among various acidophilic chemolithoautotrophs growing on pyrite has not been studied in detail. These aspects are the scope of this study with emphasis on the effects exerted by the N-acyl-homoserine lactone (AHL) type signaling molecules which are produced by Acidithiobacillus ferrooxidans. Their effects on attachment and leaching efficiency by other leaching bacteria, such as Acidithiobacillus ferrivorans, Acidiferrobacter spp. SPIII/3 and Leptospirillum ferrooxidans in pure and mixed cultures growing on pyrite is shown.


2014 ◽  
Vol 69 (5) ◽  
pp. 617-627 ◽  
Author(s):  
O. Priha ◽  
V. Virkajärvi ◽  
R. Juvonen ◽  
R. Puupponen-Pimiä ◽  
L. Nohynek ◽  
...  

2021 ◽  
Author(s):  
Eli COMPAORE ◽  
Moussa COMPAORE ◽  
Vincent OUEDRAOGO ◽  
Ablassé ROUAMBA ◽  
Martin KIENDREBEOGO

Abstract Background: Pseudomonas aeruginosa causes infections in human particularly immunocompromised patients with cystic fibrosis, severe burns and HIV, resulting in high morbidity and mortality. The pathogenic bacteria P aeruginosa produces virulence factors regulated by the mechanism called quorum sensing system. Objective: The aim of this study was to assess the anti-quorum sensing activity of Ageratum conyzoides extracts Method: Chromobacterium violaceum reporter strain CV026 was used to highlight any interference with bacterium QS and strains derived from P. aeruginosa PAO1 were used to reveal any interference with the expression of quorum sensing genes, and to assess any impact of extract on the kinetics of the production of pyocyanin, elastases and biofilm formation. Results: Hydro-methanolic extract at the sub-inhibitory concentration of 100 μg/mL reduced quorum sensing virulence factors production such as, pyocyanin, elastases, rhamnolipids and biofilm formation in P. aeruginosa PAO1 after 18 hours monitoring. Extract showed significant inhibition in HSL-mediated violacein production on C. violaceum CV026 after 48 hours monitoring. Biofilm formation was inhibited up to 32%. It affected QS gene expression in PAO1. The regulatory genes lasR / rhlR and the lasI synthases were most affected. At 8hours, hydro-methanolic extract reduced both QS gene to more than 30% (lasI/lasR and rhlI/R respectively 33.8% /30.2% and 36% /33.2%). RhlA and lasB genes have been relatively affected (13.4% and 28.9%). After 18 h, this extract reduced significantly the expression of regulatory 30 genes lasR (31%) and rhlR (39.6%) although synthases genes seemed to be less affected (lasI/21.2% and rhlI/11.6%). A limited impact was observed on the downstream genes (lasB /20.0% and rhlA /15.3%). No negative impact was observed on CV026 and PAO1 growth and cell viability. Our study also showed that A. conyzoides having ample amount of phenolics, flavonoids and triterpenoids. This phytochemical content could be one of the factors for showing anti quorum potential. Conclusion: Results indicate that hydro methanol 80 % extract from A. conyzoides could be a source of potential QS inhibition compounds.


2021 ◽  
Vol 11 ◽  
Author(s):  
Yunge Liu ◽  
Lina Wu ◽  
Jina Han ◽  
Pengcheng Dong ◽  
Xin Luo ◽  
...  

The aim of this study was to assess the efficacy of four natural antimicrobial compounds (cinnamaldehyde, eugenol, resveratrol and thymoquinone) plus a control chemical disinfectant (sodium hypochlorite) in inhibiting biofilm formation by Listeria monocytogenes CMCC54004 (Lm 54004) at a minimum inhibitory concentration (MIC) and sub-MICs. Crystal violet staining assay and microscopic examination were employed to investigate anti-biofilm effects of the evaluated compounds, and a real-time PCR assay was used to investigate the expression of critical genes by Lm 54004 biofilm. The results showed that five antimicrobial compounds inhibited Lm 54004 biofilm formation in a dose dependent way. Specifically, cinnamaldehyde and resveratrol showed better anti-biofilm effects at 1/4 × MIC, while sodium hypochlorite exhibited the lowest inhibitory rates. A swimming assay confirmed that natural compounds at sub-MICs suppressed Lm 54004 motility to a low degree. Supporting these findings, expression analysis showed that all four natural compounds at 1/4 × MIC significantly down-regulated quorum sensing genes (agrA, agrC, and agrD) rather than suppressing the motility- and flagella-associated genes (degU, motB, and flaA). This study revealed that sub-MICs of natural antimicrobial compounds reduced biofilm formation by suppressing the quorum sensing system rather than by inhibiting flagella formation.


2019 ◽  
Vol 2019 ◽  
pp. 1-12
Author(s):  
Edward Ntim Gasu ◽  
Hubert Senanu Ahor ◽  
Lawrence Sheringham Borquaye

Bacteria in biofilms are encased in an extracellular polymeric matrix that limits exposure of microbial cells to lethal doses of antimicrobial agents, leading to resistance. In Pseudomonas aeruginosa, biofilm formation is regulated by cell-to-cell communication, called quorum sensing. Quorum sensing facilitates a variety of bacterial physiological functions such as swarming motility and protease, pyoverdine, and pyocyanin productions. Peptide mix from the marine mollusc, Olivancillaria hiatula, has been studied for its antibiofilm activity against Pseudomonas aeruginosa. Microscopy and microtiter plate-based assays were used to evaluate biofilm inhibitory activities. Effect of the peptide mix on quorum sensing-mediated processes was also evaluated. Peptide mix proved to be a good antibiofilm agent, requiring less than 39 μg/mL to inhibit 50% biofilm formation. Micrographs obtained confirmed biofilm inhibition at 1/2 MIC whereas 2.5 mg/mL was required to degrade preformed biofilm. There was a marked attenuation in quorum sensing-mediated phenotypes as well. At 1/2 MIC of peptide, the expression of pyocyanin, pyoverdine, and protease was inhibited by 60%, 72%, and 54%, respectively. Additionally, swarming motility was repressed by peptide in a dose-dependent manner. These results suggest that the peptide mix from Olivancillaria hiatula probably inhibits biofilm formation by interfering with cell-to-cell communication in Pseudomonas aeruginosa.


Sign in / Sign up

Export Citation Format

Share Document