scholarly journals Separation of Volatile Metabolites from the Leaf-Derived Essential Oil of Piper mollicomum Kunth (Piperaceae) by High-Speed Countercurrent Chromatography

Molecules ◽  
2018 ◽  
Vol 23 (12) ◽  
pp. 3064 ◽  
Author(s):  
André Marques ◽  
Ana Peixoto ◽  
D. Provance ◽  
Maria Kaplan

The technique of high-speed countercurrent chromatography was applied to the isolation of compounds in essential oil derived from the leaves of Piper mollicomum species. Plant leaves (200.0 g) were submitted to hydrodistillation in a modified Clevenger apparatus. The resulting crude leaf essential oil was analyzed by gas chromatography with flame ionization detector (GC-FID) and gas chromatography-mass spectrometry (GC-MS) to determine the profile of the components. The purified fractions were composed of monoterpenes and sesquiterpenes such as camphor (85.0 mg at 98.5% purity), (E)-nerolidol (100.0 mg at 92.8% purity), and camphene (150.0 mg at 82.0% purity). A minor component of the essential oil, bornyl acetate (16.2 mg at 91.2% purity) was also isolated in the one-step separation protocol in 2 h. The countercurrent chromatography technique proved to be a fast and efficient method for the separation of volatile metabolites that conserved the solvent while delivering various fractions of high purity.

2018 ◽  
Vol 2018 ◽  
pp. 1-8
Author(s):  
Xiao-Meng Wei ◽  
Shan-Shan Guo ◽  
Hua Yan ◽  
Xian-Long Cheng ◽  
Feng Wei ◽  
...  

Essential oils obtained from many plants showed various kinds of insecticidal properties; some of them have been considered as alternative insecticides for pest control. The present study was aimed at determining the chemical composition of the essential oil from the roots of Bupleurum bicaule Helm, as well as evaluating the contact and repellent activities of the oil and four identified compounds against Lasioderma serricorne and Liposcelis bostrychophila adults. The essential oil was extracted by hydrodistillation, and its components were analyzed by gas chromatography-mass spectrometry (GC-MS). 26 components were determined and the main compounds included trans-2-isopropylbicyclo[4.3.0]non-3-en-8-one (25.9%), 4,5-dimethyl-1,2,3,6,7,8,8a,8b-octahydrobiphenylene (23.5%), and 1,4-dimethoxy-2-tert-butylbenzene (4.3%). It was found that the essential oil exhibited contact toxicity against L. serricorne (LD50 = 11.91 μg/adult), but the contact toxicity against L. bostrychophila could not be observed. The essential oil also showed strong repellent activity against L. serricorne with percent repellency of 100% at 78.63 nl/cm2. Four chemical compounds, 1,4-dimethoxy-2-tert-butylbenzene, bornyl acetate, (2E,4E)-2,4-nonadienal, and β-bisabolene, exhibited various levels of bioactivities. The experimental results indicated that the essential oil of B. bicaule and its individual compounds could be used in insecticidal and repellent strategies for stored product insects.


2016 ◽  
Vol 49 (2) ◽  
pp. 107-113 ◽  
Author(s):  
H. Ghelichnia

Abstract The genus Thymus has a wide distributional range and chemical composition of the essential oils varies with geographical location of collection site, climate and other ecological factors. The essential oils of the aerial parts were obtained by hydrodistillation and analyzed by gas chromatography (GC) and gas chromatography/mass spectrometry (GC-MS). Twenty seven components were characterized in the essential oil of T. fedtschenkoi. The major constituents of the oil were carvacrol (69.04%), thymol (5.95%), borneol (5.21%), p-cymene (4.20%), bornyl acetate (2.97%) and 1,8- cineole (2.72%). Twenty two components were characterized in the essential oil of T. trauveterri. The major constituents of the oil were carvacrol (54.02%), thymol (9.29%), borneol (3.51%), p-cymene (18.64%) and γ- terpinene (2.97%). Twenty six components were characterized in the essential oil of T. pubescens. The major constituents of the oil were carvacrol (13.85%), α-terpineol (11.49%), thymol (10%), geraniol (9.48%), α-pinene (8.52%), p-cymene (7.66%), camphor (4.66%), γ-terpinene (3.15%) and myrcene (2.22%). Twenty four components were characterized in the essential oil of T. fallax. The major constituents of the oil were carvacrol (41.84%), p-cymene (12.18%), α-terpineol (11.49%), thymol (10%), γ-terpinene (8.68%), borneol (5.11%), geraniol (4.35%) and geranyl acetate (2.16%).


2009 ◽  
Vol 74 (10) ◽  
pp. 1035-1040 ◽  
Author(s):  
Vele Tesevic ◽  
Slobodan Milosavljevic ◽  
Vlatka Vajs ◽  
Iris Djordjevic ◽  
Marina Sokovic ◽  
...  

The chemical composition of the essential oil of fresh young needles with twigs of Douglas fir (Pseudosuga menziesii Mirb. Franco) obtained by hydrodistillation were analyzed by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). Ten compounds, accounting for 94.26 % of the oil, were identified. The main compounds found were bornyl acetate (34.65 %), camphene (29.82 %), ?-pinene (11.65 %) and santene (5.45 %). The antifungal activity of the essential oil was tested against various fungal species. The minimum inhibitory concentration of Douglas fir essential oil ranged from 1.5 to 4 ?g mL-1. The fungi most sensitive to the tested oil were Phomopsis helianthi, while Penicillium species, along with Microsporum canis, were the most resistant. Compared to the commercial fungicidal agent bifonazole, the studied essential oil demonstrated higher antifungal activity.


2012 ◽  
Vol 7 (10) ◽  
pp. 1934578X1200701 ◽  
Author(s):  
Thilahgavani Nagappan ◽  
Perumal Ramasamy ◽  
Charles Santhanaraju Vairappan

The composition of the essential oils of Murraya koenigii(L.) Spreng, cultivated at six locations in Peninsula Malaysia and Borneo are presented. The oils were obtained from fresh leaves by hydrodistillation and analyzed by gas chromatography-mass spectrometry (GC-MS); 61 compounds were identified, of which eleven were present in all the specimens analyzed. The two major volatile metabolites were identified as β-caryophyllene (16.6-26.6%) and α-humulene (15.2-26.7%) along with nine minor compounds identified as β-elemene (0.3-1.3%), aromadendrene (0.5-1.5%), β-selinene (3.8-6.5%), spathulenol (0.6-2.7%), caryophyllene oxide (0.7-3.6%), viridiflorol (1.5-5.5%), 2-naphthalenemethanol (0.7-4.8%), trivertal (0.1-1.0%) and juniper camphor (2.6-8.3%). The results suggest that β-caryophyllene and α-humulene could be used as chemotaxonomical markers for Malaysian M. koenigii, hence these specimens could be of the same stock and different from the ones in India, Thailand and China.


2020 ◽  
Vol 15 (12) ◽  
pp. 1934578X2098123
Author(s):  
Peng-fei Yang ◽  
Hui Lu ◽  
Qiong-bo Wang ◽  
Zhi-wei Zhao ◽  
Qiang Liu ◽  
...  

Detailed chemical constituents of essential oil from the Pterocephalus hookeri leaves and its antimicrobial activities were investigated in this study. The essential oil, obtained by hydrodistillation, was characterized by gas chromatography-flame ionization detection and gas chromatography-mass spectrometry analyses. Among the 90 identified compounds, hexadecanoic acid (21.27%), phytol (8.03%), furfural (7.08%), oleic acid (5.25%), and phytone (4.56%) were the major components. In the antimicrobial assay, the essential oil showed strong inhibitory activities against Escherichia coli, Candida albicans, and Staphylococcus aureus with minimum inhibitory concentration values of 31.3, 62.5, and 125 µg/mL, respectively. To our knowledge, this is the first report concerning chemical composition and antimicrobial activities of the essential oil from Pterocephalus hookeri.


2020 ◽  
Vol 18 (1) ◽  
pp. 175-184 ◽  
Author(s):  
Ramzi A. Mothana ◽  
Fahd A. Nasr ◽  
Jamal M. Khaled ◽  
Omar M. Noman ◽  
Nael Abutaha ◽  
...  

AbstractThe essential oil of Ducrosia ismaelis Asch. (Apiaceae) that grows wild in Saudi Arabia was investigated utilizing gas chromatography (GC), and gas chromatography-mass spectrometry. Fifty constituents were characterized, representing 96.1% of the total oil. The D. ismaelis essential oil (DIEO) was distinguished by a high composition of oxygenated monoterpenes (51.6%). Decanal (40.6%), α-pinene (15.1%) and dodecanal (13.7%) were the fundamental components. Additionally, DIEO was evaluated for its cytotoxic, antibacterial, antifungal and antioxidant activities. DIEO revealed a great cytotoxic effectiveness against the tested cancer cell lines with IC50 values between 66.2 and 137.3 μg/mL particularly against MCF-7 cancer cells. Furthermore, the induction of apoptosis against MCF-7 cells has been asserted using staining assay (annexin VFITC and/or propidium iodide (PI) dyes) and flow cytometry technique. The DIEO possessed a strong antimicrobial activity against Gram-positive bacterial and fungal strains with MIC-values between 0.07 and 0.31 mg/ml. The values of MBC or MFC were almost once higher than those of MIC’s. Moreover, the β-carotene-bleaching and DPPH free radical-scavenging tests showed that DIEO had a moderate activity (68%) as an antioxidant agent in decolouring of the β-carotene at 1.0 mg/mL and a moderate radical scavenging for DPPH (66 and 72%) at 0.50 and 1.0 mg/mL.


2013 ◽  
Vol 59 (4) ◽  
pp. 86-96 ◽  
Author(s):  
Iyad Ghanem ◽  
Adnan Audeh ◽  
Amer Abu Alnaser ◽  
Ghaleb Tayoub

Abstract The objective of current study was to determine the chemical constituents and fumigant toxicity of essential oil isolated by hydro-distillation from dry fruit of bitter fennel (Foeniculum vulgare Miller). The chemical composition of the essential oil was assessed by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). Constituents of the oil were determined as α-pinene (1.6%) and limonene (3.3%), fenchone (27.3%), estragol (3.9%), and (E)-anethole (61.1%). The fumigant toxicity of the essential oil was tested on larvae of the stored product insect Trogoderma granarium Everts. The mortality of larvae was tested at different concentrations ranging from 31.2 to 531.2 μl/l air and at different exposure times (24 and 48 h). Probit analysis showed that LC50 and LC90 following a 48 h-exposure period for essential oil were 38.4 and 84.6 μl/l, respectively. These results showed that the essential oil from F. vulgare may be applicable to the management of populations of stored-product insects.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Kamel Msaada ◽  
Nidhal Salem ◽  
Olfa Bachrouch ◽  
Slim Bousselmi ◽  
Sonia Tammar ◽  
...  

The aim of this study was to determine the chemical variability of wormwood extracts as affected by the growing region. Antioxidant and antimicrobial activities were also investigated. The essential oil composition variability ofA. absinthiumL. aerial parts collected from four different Tunisian regions was assessed by gas chromatography (GC/FID) and by gas chromatography mass spectrometry (GC/MS). In addition, total polyphenols, flavonoids, and condensed tannins as well as antioxidant, antibacterial, and antifungal activities of methanolic extract and essential oils were undertaken. Chromatographic analysis of wormwood essential oils showed the predominance of monoterpene hydrocarbons represented mainly by chamazulene. RP-HPLC analysis of wormwood methanolic extract revealed the predominance of phenolic acids. Antiradical activity was region-dependant and the methanolic extract of Bou Salem region has the strongest activity (CI50=9.38±0.82 µg/mL). Concerning the reducing power, the methanolic extract of Bou Salem, Jérissa, and Boukornine regions was more active than the positive control. Obtained results of antimicrobial activities showed that wormwood essential oil is endowed with important antibacterial activity which was strongly related to the organoleptic quality of oil which appeared strongly region-dependant.A. absinthiumL. EOs investigated are quite interesting from a pharmaceutical standpoint because of their biological activities.


Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 2949
Author(s):  
Juan I. Burneo ◽  
Ángel Benítez ◽  
James Calva ◽  
Pablo Velastegui ◽  
Vladimir Morocho

Chemical compositions of plants are affected by the initial nutrient contents in the soil and climatic conditions; thus, we analyzed for the first time the effects of soil and leaf nutrients on the compositions of the essential oils (EOs) of Siparuna muricata in four different localities in Ecuador. EOs were obtained by hydrodistillation and analyzed by gas chromatography/mass spectrometry (GC/MS) and a gas chromatography/flame ionization detector (GC/FID). Enantiomeric distribution by GC/MS was determined, modifying the enantiomeric separation of β-pinene, limonene, δ-elemene, β-bourbonene, cis-cadina-1 (6), 4-diene and atractylone. A total of 44 compounds were identified. The most representative for L1 were guaiol, atractylone and 4-diene; for L2, cis-cadina-1(6),4-diene and myrcene; for L3, atractylone, myrcene and germacrene B; and finally, L4 germacrene B, myrcene and cis-cadina-1(6),4-diene. Correlations between soil- leaf chemical elements such as Al, Ca, Fe, Mg, Mn, N and Si in the different localities were significant with chemical composition of the essential oil of Siparuna muricata; however, correlations between soil and leaf K, P, and Na were not significant. Cluster and NMDS analysis showed high dissimilarity values of secondary metabolites between four localities related with changes in soil- leaf nutrients. Thus, the SIMPER routine revealed that not all secondary metabolites contribute equally to establishing the differences in the four localities, and the largest contributions are due to differences in guaiol, cis-cadina-1(6),4-diene, atractylone and germacrene. Our investigation showed for the first time the influences of altitude and soil- leaf chemical elements in the chemical composition of the EOs of S. muricata.


Sign in / Sign up

Export Citation Format

Share Document