scholarly journals γ-Propoxy-Sulfo-Lichenan Induces In Vitro Cell Differentiation of Human Keratinocytes

Molecules ◽  
2019 ◽  
Vol 24 (3) ◽  
pp. 574
Author(s):  
Stefan Esch ◽  
Maren Gottesmann ◽  
Andreas Hensel

Background: As non-cellulosic β-d-glucans are known to exert wound-healing activity by triggering keratinocytes into cellular differentiation, the functionality of a semisynthetic lichenan-based polysaccharide on skin cell physiology was investigated. Methods: γ-Propoxy-sulfo-lichenan (γ-PSL, molecular weight 52 kDa, β-1,3/1,4-p-d-Glucose, degree of substitution 0.7) was prepared from lichenan. Differentiation of primary human keratinocytes was assayed by the protein analysis of differentiation specific markers and by gene expression analysis (qPCR). The gene array gave insight into the cell signaling induced by the polysaccharide. Results: γ-PSL (1 to 100 μg/mL) triggered keratinocytes, in a concentration-dependent manner, into the terminal differentiation, as shown by the increased protein expression of cytokeratin 1 (KRT1). Time-dependent gene expression analysis proved differentiation-inducing effects, indicating strong and fast KRT1 gene expression, while KRT10 expression showed a maximum after 12 to 24 h, followed by downregulation to the basal level. Involucrin gene expression was only changed to a minor extent, which was similar to loricrin and transglutaminase. Gene array indicated the influence of γ-PSL on MAP kinase and TGF-β mediated signaling towards keratinocyte differentiation. Conclusion: The propoxylated lichenan may improve wound healing by topical application to promote the terminal barrier formation of keratinocytes.

2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Andreas Bayer ◽  
Mersedeh Tohidnezhad ◽  
Justus Lammel ◽  
Sebastian Lippross ◽  
Peter Behrendt ◽  
...  

Autologous thrombocyte concentrate lysates, for example, platelet-released growth factors, (PRGFs) or their clinically related formulations (e.g., Vivostat PRF®) came recently into the physicians’ focus as they revealed promising effects in regenerative and reparative medicine such as the support of healing of chronic wounds. To elucidate the underlying mechanisms, we analyzed the influence of PRGF and Vivostat PRF on human keratinocyte differentiation in vitro and on epidermal differentiation status of skin wounds in vivo. Therefore, we investigated the expression of early (keratin 1 and keratin 10) and late (transglutaminase-1 and involucrin) differentiation markers. PRGF treatment of primary human keratinocytes decreased keratin 1 and keratin 10 gene expression but induced involucrin and transglutaminase-1 gene expression in an epidermal growth factor receptor- (EGFR-) dependent manner. In concordance with these results, microscopic analyses revealed that PRGF-treated human keratinocytes displayed morphological features typical of keratinocytes undergoing terminal differentiation. In vivo treatment of artificial human wounds with Vivostat PRF revealed a significant induction of involucrin and transglutaminase-1 gene expression. Together, our results indicate that PRGF and Vivostat PRF induce terminal differentiation of primary human keratinocytes. This potential mechanism may contribute to the observed beneficial effects in the treatment of hard-to-heal wounds with autologous thrombocyte concentrate lysates in vivo.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Lydia Ntari ◽  
Christoforos Nikolaou ◽  
Ksanthi Kranidioti ◽  
Dimitra Papadopoulou ◽  
Eleni Christodoulou-Vafeiadou ◽  
...  

Abstract Background New medications for Rheumatoid Arthritis (RA) have emerged in the last decades, including Disease Modifying Antirheumatic Drugs (DMARDs) and biologics. However, there is no known cure, since a significant proportion of patients remain or become non-responders to current therapies. The development of new mode-of-action treatment schemes involving combination therapies could prove successful for the treatment of a greater number of RA patients. Methods We investigated the effect of the Tyrosine Kinase inhibitors (TKIs) dasatinib and bosutinib, on the human TNF-dependent Tg197 arthritis mouse model. The inhibitors were administered either as a monotherapy or in combination with a subtherapeutic dose of anti-hTNF biologics and their therapeutic effect was assessed clinically, histopathologically as well as via gene expression analysis and was compared to that of an efficient TNF monotherapy. Results Dasatinib and, to a lesser extent, bosutinib inhibited the production of TNF and proinflammatory chemokines from arthritogenic synovial fibroblasts. Dasatinib, but not bosutinib, also ameliorated significantly and in a dose-dependent manner both the clinical and histopathological signs of Tg197 arthritis. Combination of dasatinib with a subtherapeutic dose of anti-hTNF biologic agents, resulted in a synergistic inhibitory effect abolishing all arthritis symptoms. Gene expression analysis of whole joint tissue of Tg197 mice revealed that the combination of dasatinib with a low subtherapeutic dose of Infliximab most efficiently restores the pathogenic gene expression profile to that of the healthy state compared to either treatment administered as a monotherapy. Conclusion Our findings show that dasatinib exhibits a therapeutic effect in TNF-driven arthritis and can act in synergy with a subtherapeutic anti-hTNF dose to effectively treat the clinical and histopathological signs of the pathology. The combination of dasatinib and anti-hTNF exhibits a distinct mode of action in restoring the arthritogenic gene signature to that of a healthy profile. Potential clinical applications of combination therapies with kinase inhibitors and anti-TNF agents may provide an interesting alternative to high-dose anti-hTNF monotherapy and increase the number of patients responding to treatment.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Keisuke Adachi ◽  
Yosuke Asada ◽  
Toshiaki Hirakata ◽  
Miki Onoue ◽  
Satoshi Iwamoto ◽  
...  

Abstract To clarify the early alterations of gene expression using a mouse model of glaucoma filtration surgery, we carried out microarray expression analysis. Using BALB/c mice, a filtration surgery model was made by incision of the limbal conjunctiva, followed by the insertion of a 33G needle tip into the anterior chamber, and 11-0 nylon sutures. Subgroups of mice were treated intraoperatively with 0.4 mg/ml mitomycin-C (MMC). At day 3 after surgery the bleb was maintained. The bleb region tissue was sampled 3 days after the filtration surgery, and gene expression analysis was carried out using a mouse Agilent 8 × 60 K array. We found 755 hyperexpressed transcripts in the bleb region compared to control conjunctiva. The hyperexpressed transcripts included epithelial cell metaplasia-related (Il1b, Krt16, Sprr1b), inflammation-related (Ccl2, Il6) and wound healing-related (Lox, Timp1) genes. We also found downregulation of a goblet cell marker gene (Gp2) in the bleb conjunctiva. MMC treatment suppressed elastin (Eln) gene expression and enhanced keratinization-related gene expression (Krt1, Lor) in the bleb region. Our results suggest the importance of epithelial wound healing after filtration surgery, and this filtration surgery model will be a useful tool for further pathophysiological analysis.


2015 ◽  
Vol 24 (4) ◽  
pp. 314-316 ◽  
Author(s):  
Manuela Lanzafame ◽  
Elena Botta ◽  
Massimo Teson ◽  
Paola Fortugno ◽  
Giovanna Zambruno ◽  
...  

2013 ◽  
Vol 29 (3) ◽  
pp. 1227-1235 ◽  
Author(s):  
Zanelabedien Sharifian ◽  
Mohammad Bayat ◽  
Morteza Alidoust ◽  
Reza Masteri Farahani ◽  
Maryam Bayat ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document