scholarly journals 4-Cyanoindole-2′-deoxyribonucleoside as a Dual Fluorescence and Infrared Probe of DNA Structure and Dynamics

Molecules ◽  
2019 ◽  
Vol 24 (3) ◽  
pp. 602 ◽  
Author(s):  
Ismail A. Ahmed ◽  
Arusha Acharyya ◽  
Christina M. Eng ◽  
Jeffrey M. Rodgers ◽  
William F. DeGrado ◽  
...  

Unnatural nucleosides possessing unique spectroscopic properties that mimic natural nucleobases in both size and chemical structure are ideally suited for spectroscopic measurements of DNA/RNA structure and dynamics in a site-specific manner. However, such unnatural nucleosides are scarce, which prompts us to explore the utility of a recently found unnatural nucleoside, 4-cyanoindole-2′-deoxyribonucleoside (4CNI-NS), as a site-specific spectroscopic probe of DNA. A recent study revealed that 4CNI-NS is a universal nucleobase that maintains the high fluorescence quantum yield of 4-cyanoindole and that among the four natural nucleobases, only guanine can significantly quench its fluorescence. Herein, we further show that the C≡N stretching frequency of 4CNI-NS is sensitive to the local environment, making it a useful site-specific infrared probe of oligonucleotides. In addition, we demonstrate that the fluorescence-quencher pair formed by 4CNI-NS and guanine can be used to quantitatively assess the binding affinity of a single-stranded DNA to the protein system of interest via fluorescence spectroscopy, among other applications. We believe that this fluorescence binding assay is especially useful as its potentiality allows high-throughput screening of DNA–protein interactions.

Molecules ◽  
2019 ◽  
Vol 24 (7) ◽  
pp. 1379 ◽  
Author(s):  
Min You ◽  
Liang Zhou ◽  
Xinyue Huang ◽  
Yang Wang ◽  
Wenkai Zhang

The isonitrile (NC) group has been shown to be a promising infrared probe for studying the structure and dynamics of biomolecules. However, there have been no systematic studies performed on the NC group as an infrared probe, when it is bonded to an indole ring. Here, we systematically study the NC stretching mode of two model compounds, 5-isocyano-1H-indole (5ICI) and 5-isocyano-1-methyl-1H-indole (NM5ICI), using Fourier transform infrared (FTIR) spectroscopy. The NC stretching frequency is shown to be strongly dependent on the polarizability of protic solvents and the density of hydrogen-bond donor groups in the solvent when NC is bonded to an indole ring. Infrared pump–probe studies of 5ICI in DMSO and in EtOH further support that the NC stretching mode could be used as a site-specific infrared probe for local environments when NC is bonded to an indole ring.


2021 ◽  
Author(s):  
Corina Mathew ◽  
Gregor Weiß ◽  
Christoph Giese ◽  
Chia-wei Lin ◽  
Marie-Estelle Losfeld ◽  
...  

A hallmark of N-linked glycosylation in the secretory compartments of eukaryotic cells is the sequential remodeling of an initially uniform oligosaccharide to a site-specific, heterogeneous ensemble of glycostructures on mature...


2020 ◽  
Author(s):  
Corina Mathew ◽  
R. Gregor Weiß ◽  
Christoph Giese ◽  
Chia-wei Lin ◽  
Marie-Estelle Losfeld ◽  
...  

AbstractA hallmark of N-linked glycosylation in the secretory compartments of eukaryotic cells is the sequential remodeling of an initially uniform oligosaccharide to a site-specific, heterogeneous ensemble of glycostructures on mature proteins. To understand site-specific processing, we used protein disulfide isomerase (PDI), a model protein with five glycosylation sites, for molecular dynamics (MD) simulations and compared the result to a biochemical in vitro analysis with four different glycan processing enzymes. As predicted by an analysis of the accessibility of the N-glycans for their processing enzymes derived from the MD simulations, N-glycans at different glycosylation sites showed different kinetic properties for the processing enzymes. In addition, altering the tertiary structure context of N-glycan substrates affected N-glycan remodeling in a site-specific way. We propose that differential, tertiary structure context dependent N-glycan reactivities lead to different glycan structures in the same protein through kinetically controlled processing pathways.


2019 ◽  
Vol 19 (6) ◽  
pp. 430-448 ◽  
Author(s):  
Khalid Bashir Dar ◽  
Aashiq Hussain Bhat ◽  
Shajrul Amin ◽  
Syed Anjum ◽  
Bilal Ahmad Reshi ◽  
...  

Protein-Protein Interactions (PPIs) drive major signalling cascades and play critical role in cell proliferation, apoptosis, angiogenesis and trafficking. Deregulated PPIs are implicated in multiple malignancies and represent the critical targets for treating cancer. Herein, we discuss the key protein-protein interacting domains implicated in cancer notably PDZ, SH2, SH3, LIM, PTB, SAM and PH. These domains are present in numerous enzymes/kinases, growth factors, transcription factors, adaptor proteins, receptors and scaffolding proteins and thus represent essential sites for targeting cancer. This review explores the candidature of various proteins involved in cellular trafficking (small GTPases, molecular motors, matrix-degrading enzymes, integrin), transcription (p53, cMyc), signalling (membrane receptor proteins), angiogenesis (VEGFs) and apoptosis (BCL-2family), which could possibly serve as targets for developing effective anti-cancer regimen. Interactions between Ras/Raf; X-linked inhibitor of apoptosis protein (XIAP)/second mitochondria-derived activator of caspases (Smac/DIABLO); Frizzled (FRZ)/Dishevelled (DVL) protein; beta-catenin/T Cell Factor (TCF) have also been studied as prospective anticancer targets. Efficacy of diverse molecules/ drugs targeting such PPIs although evaluated in various animal models/cell lines, there is an essential need for human-based clinical trials. Therapeutic strategies like the use of biologicals, high throughput screening (HTS) and fragment-based technology could play an imperative role in designing cancer therapeutics. Moreover, bioinformatic/computational strategies based on genome sequence, protein sequence/structure and domain data could serve as competent tools for predicting PPIs. Exploring hot spots in proteomic networks represents another approach for developing targetspecific therapeutics. Overall, this review lays emphasis on a productive amalgamation of proteomics, genomics, biochemistry, and molecular dynamics for successful treatment of cancer.


1989 ◽  
Vol 9 (4) ◽  
pp. 1507-1512 ◽  
Author(s):  
H Zhu ◽  
H Conrad-Webb ◽  
X S Liao ◽  
P S Perlman ◽  
R A Butow

All mRNAs of yeast mitochondria are processed at their 3' ends within a conserved dodecamer sequence, 5'-AAUAAUAUUCUU-3'. A dominant nuclear suppressor, SUV3-I, was previously isolated because it suppresses a dodecamer deletion at the 3' end of the var1 gene. We have tested the effects of SUV3-1 on a mutant containing two adjacent transversions within a dodecamer at the 3' end of fit1, a gene located within the 1,143-base-pair intron of the 21S rRNA gene, whose product is a site-specific endonuclease required in crosses for the quantitative transmission of that intron to 21S alleles that lack it. The fit1 dodecamer mutations blocked both intron transmission and dodecamer cleavage, neither of which was suppressed by SUV3-1 when present in heterozygous or homozygous configurations. Unexpectedly, we found that SUV3-1 completely blocked cleavage of the wild-type fit1 dodecamer and, in SUV3-1 homozygous crosses, intron conversion. In addition, SUV3-1 resulted in at least a 40-fold increase in the amount of excised intron accumulated. Genetic analysis showed that these phenotypes resulted from the same mutation. We conclude that cleavage of a wild-type dodecamer sequence at the 3' end of the fit1 gene is essential for fit1 expression.


Sign in / Sign up

Export Citation Format

Share Document