scholarly journals Antimycobacterial and Nitric Oxide Production Inhibitory Activities of Triterpenes and Alkaloids from Psychotria nuda (Cham. & Schltdl.) Wawra

Molecules ◽  
2019 ◽  
Vol 24 (6) ◽  
pp. 1026 ◽  
Author(s):  
Almir de Carvalho Junior ◽  
Rafaela Oliveira Ferreira ◽  
Michel de Souza Passos ◽  
Samyra da Silva Boeno ◽  
Lorena Glória das Virgens ◽  
...  

A phytochemical study of leaves and twigs of Psychotria nuda resulted in 19 compounds, including five indole alkaloids, N,N,N-trimethyltryptamine, lyaloside, strictosamide, strictosidine, and 5α-carboxystrictosidine; two flavonolignans, cinchonain Ia and cinchonain Ib; an iridoid, roseoside; a sugar, lawsofructose; a coumarin, scopoletin; a diterpene, phytol; three triterpenes, pomolic acid, spinosic acid, and rotungenic acid; and five steroids, sitosterol, stigmasterol, campesterol, β-sitosterol-3-O-β-d-glucoside, and β-stigmasterol-3-O-β-d-glucoside. Some compounds were evaluated for their in vitro activity against Mycobacterium tuberculosis and their ability to inhibit NO production by macrophages stimulated by lipopolysaccharide (LPS). The compounds pomolic acid, spinosic acid, strictosidine, and 5α-carboxystrictosidine displayed antimycobacterial activity with minimum inhibitory concentrations ranging from 7.1 to 19.2 µg/mL. These compounds showed promising inhibitory activity against NO production (IC50 3.22 to 25.5 μg/mL). 5α-carboxystrictosidine did not show cytotoxicity against macrophages RAW264.7 up to a concentration of 100 µg/mL. With the exception of strictosamide, this is the first report of the occurrence of these substances in P. nuda.

2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Isabela Francisca Borges Costa ◽  
Sanderson Dias Calixto ◽  
Marlon Heggdorne de Araujo ◽  
Tatiana Ungaretti Paleo Konno ◽  
Luzineide Wanderley Tinoco ◽  
...  

The genusOcotea(Lauraceae) is distributed mainly in tropical and subtropical regions. Some species of this genus asO. puberulaandO. quixoshave been described in the literature, showing antibacterial activity. AndOcotea macrophyllashowed anti-inflammatory activity with inhibition of COX-1, COX-2, and LOX-5. The purpose of this study was the phytochemical investigation of the plant speciesOcotea notatafrom Restinga Jurubatiba National Park, Macaé, RJ, Brazil, and the search for antimycobacterial fractions and compounds. The crude extract was evaluated for antimycobacterial activity and presented95.75±2.53% of growth inhibition at 100 µg/mL. Then, it was subjected to a liquid-liquid partition and subsequently was chemically investigated by HPLC, revealing the major presence of flavonoids. In this process the partition fractions hexane, ethyl acetate, and butanol are shown to be promising in the antimycobacterial assay. In addition, ethyl acetate fraction was chromatographed and afforded two flavonoids identified by MS and NMR as afzelin and isoquercitrin. The isolated flavonoids afzelin and isoquercitrin were evaluated for their antimycobacterial activity and for their ability to inhibit NO production by macrophages stimulated by LPS; both flavonoids isoquercitrin (Acet22) and afzelin (Acet32) were able to inhibit the production of NO by macrophages. The calculated IC50of Acet22 and Acet32 was 1.03 and 0.85 µg/mL, respectively.


2021 ◽  
Vol 7 (6) ◽  
pp. 408
Author(s):  
Virayu Suthiphasilp ◽  
Achara Raksat ◽  
Tharakorn Maneerat ◽  
Sarinya Hadsadee ◽  
Siriporn Jungsuttiwong ◽  
...  

Chemical investigation of the mycelia of the pathogenic fungus Curvularia sp. which was isolated from a leaf of Dactyloctenium aegyptium (crowfoot grass), resulted in the isolation of a new compound, curvulariahawadride (5), along with five known compounds (1–4, and 6). Their structures were determined on the basis of spectroscopic data, including 1D and 2D NMR and HRESIMS. The absolute configuration of 5 was established from experimental and calculated electronic circular dichroism (ECD). Compounds 1, 3, and 5 showed nitric oxide (NO) production inhibitory activity with IC50 values of 53.7, 32.8, and 12.8 µM, respectively. Compounds 2 and 4 showed significant cytotoxicity against lung cancer A549, colorectal cancer SW480, and leukemic K562 cells with an IC50 ranging value of 11.73 to 17.59 µM.


2005 ◽  
Vol 173 (4S) ◽  
pp. 137-137
Author(s):  
Michael M. Ohebshalom ◽  
Stella K. Maeng ◽  
Jie Chen ◽  
Dix P. Poppas ◽  
Diane Felsen

2021 ◽  
Vol 23 ◽  
pp. 205-210
Author(s):  
Mayara Caldeira-Dias ◽  
Sarah Viana-Mattioli ◽  
Jackeline de Souza Rangel Machado ◽  
Mattias Carlström ◽  
Ricardo de Carvalho Cavalli ◽  
...  

2018 ◽  
Vol 60 (No. 8) ◽  
pp. 359-366
Author(s):  
J. Li ◽  
B. Shi ◽  
S. Yan ◽  
L. Jin ◽  
Y. Guo ◽  
...  

The effects of chitosan on nitric oxide (NO) production and inducible nitric oxide synthase (iNOS) activity and gene expression in vivo or vitro were investigated in weaned piglets. In vivo, 180 weaned piglets were assigned to five dietary treatments with six replicates. The piglets were fed on a basal diet supplemented with 0 (control), 100, 500, 1000, and 2000 mg chitosan/kg feed, respectively. In vitro, the peripheral blood mononuclear cells (PBMCs) from a weaned piglet were cultured respectively with 0 (control), 40, 80, 160, and 320 µg chitosan/ml medium. Results showed that serum NO concentrations on days 14 and 28 and iNOS activity on day 28 were quadratically improved with increasing chitosan dose (P < 0.05). The iNOS mRNA expressions were linearly or quadratically enhanced in the duodenum on day 28, and were improved quadratically in the jejunum on days 14 and 28 and in the ileum on day 28 (P < 0.01). In vitro, the NO concentrations, iNOS activity, and mRNA expression in unstimulated PBMCs were quadratically enhanced by chitosan, but the improvement of NO concentrations and iNOS activity by chitosan were markedly inhibited by N-(3-[aminomethyl] benzyl) acetamidine (1400w) (P < 0.05). Moreover, the increase of NO concentrations, iNOS activity, and mRNA expression in PBMCs induced by lipopolysaccharide (LPS) were suppressed significantly by chitosan (P < 0.05). The results indicated that the NO concentrations, iNOS activity, and mRNA expression in piglets were increased by feeding chitosan in a dose-dependent manner. In addition, chitosan improved the NO production in unstimulated PBMCs but inhibited its production in LPS-induced cells, which exerted bidirectional regulatory effects on the NO production via modulated iNOS activity and mRNA expression.


Molecules ◽  
2020 ◽  
Vol 25 (24) ◽  
pp. 6034
Author(s):  
Wen-bing Ding ◽  
Rui-yuan Zhao ◽  
Guan-hua Li ◽  
Bing-lei Liu ◽  
Hua-liang He ◽  
...  

Five new cyclic diarylheptanoids (platycary A–E, compounds 1–5) and three previously identified analogues (i.e., phttyearynol (compound 6), myricatomentogenin (compound 7), and juglanin D (compound 8)) were isolated from the stem bark of Platycarya strobilacea. The structures of these compounds were determined using NMR, HRESIMS, and electronic circular dichroism (ECD) data. The cytotoxicity of compounds 1–5 and their ability to inhibit nitric oxide (NO) production, as well as protect against the corticosterone-induced apoptosis of Pheochromocytoma (PC12) cells, were evaluated in vitro using the appropriate bioassays. Compounds 1 and 2 significantly inhibited the corticosterone-induced apoptosis of PC12 cells at a concentration of 20 μΜ.


2011 ◽  
Vol 59 (5) ◽  
pp. 653-656 ◽  
Author(s):  
Shuang Liang ◽  
Jun-Mian Tian ◽  
Yi Feng ◽  
Xiao-Hua Liu ◽  
Zhi Xiong ◽  
...  

2003 ◽  
Vol 31 (11) ◽  
pp. 1337-1346 ◽  
Author(s):  
Jose A. Adams ◽  
James E. Moore, Jr. ◽  
Michael R. Moreno ◽  
Jaqueline Coelho ◽  
Jorge Bassuk ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document