scholarly journals Multivesicular Liposomes for the Sustained Release of Angiotensin I-Converting Enzyme (ACE) Inhibitory Peptides from Peanuts: Design, Characterization, and In Vitro Evaluation

Molecules ◽  
2019 ◽  
Vol 24 (9) ◽  
pp. 1746 ◽  
Author(s):  
Ning Li ◽  
Aimin Shi ◽  
Qiang Wang ◽  
Guoquan Zhang

The multivesicular liposome (MVL) provides a potential delivery approach to avoid the destruction of the structure of drugs by digestive enzymes of the oral cavity and gastrointestinal system. It also serves as a sustained-release drug delivery system. In this study, we aimed to incorporate a water-soluble substance into MVLs to enhance sustained release, prevent the destruction of drugs, and to expound the function of different components and their mechanism. MVLs were prepared using the spherical packing model. The morphology, structure, size distribution, and zeta potential of MVLs were examined using an optical microscope (OM), confocal microscopy (CLSM), transmission electron cryomicroscope (cryo-EM) micrograph, a Master Sizer 2000, and a zeta sizer, respectively. The digestion experiment was conducted using a bionic mouse digestive system model in vitro. An in vitro release and releasing mechanism were investigated using a dialysis method. The average particle size, polydispersity index, zeta potential, and encapsulation efficiency are 47.6 nm, 1.880, −70.5 ± 2.88 mV, and 82.00 ± 0.25%, respectively. The studies on the controlled release in vitro shows that MVLs have excellent controlled release and outstanding thermal stability. The angiotensin I-converting enzyme (ACE) inhibitory activity of ACE-inhibitory peptide (AP)-MVLs decreased only 2.84% after oral administration, and ACE inhibitory activity decreased by 5.03% after passing through the stomach. Therefore, it could serve as a promising sustained-release drug delivery system.

2021 ◽  
Author(s):  
Jelena Radović ◽  
Relja Suručić ◽  
Marjan Niketić ◽  
Tatjana Kundakovic-Vasovic

Abstract Alchemilla viridiflora Rothm., Rosaceae is a herbaceous plant widespread in central Greece, Bulgaria, North Macedonia and Serbia with Kosovo. LC-MS analysis leads to the identification of 20 compounds in methanol extract, mainly ellagitannins and flavonoid glycosides. Considering that different plant extracts were traditionally used for treatment of hypertension and that some of the analyzed methanol extract constituents possess beneficial cardiovascular effects, we hypothesized that some of these effects are achieved through inhibition of angiotensin I-converting enzyme (ACE). The dose-dependent activities ACE inhibitory activity of A. viridiflora and miquelianin were observed with an IC50 of 2.51 ± 0.00 µg/ml of A. viridiflora compared to IC50 of 2.59 ± 0.00 µg/mL for miquelianin. Contribution of the single compounds to the tested activity was further analyzed through the in silico experimental approach. Computational docking results showed that tiliroside, ellagic acid pentose and galloyl-HHDP-glucose exhibited even better binding affinity for ACE active site than miquelianin, which ACE activity was confirmed by an in vitro assay.


2005 ◽  
Vol 10 (3) ◽  
pp. 239-243 ◽  
Author(s):  
Rohan Karawita ◽  
Pyo-Jam park ◽  
Nalin Siriwardhana ◽  
Byong-Tae Jeon ◽  
Sang-Ho Moon ◽  
...  

Biomolecules ◽  
2018 ◽  
Vol 8 (4) ◽  
pp. 101 ◽  
Author(s):  
Guowei Shu ◽  
Jie Huang ◽  
Chunju Bao ◽  
Jiangpeng Meng ◽  
He Chen ◽  
...  

Angiotensin I-converting enzyme (ACE) peptides are bioactive peptides that have important value in terms of research and application in the prevention and treatment of hypertension. While widespread literature is concentrated on casein or whey protein for production of ACE-inhibitory peptides, relatively little information is available on selecting the proper proteases to hydrolyze the protein. In this study, skimmed cow and goat milk were hydrolyzed by four commercial proteases, including alkaline protease, trypsin, bromelain, and papain. Angiotensin I-converting enzyme-inhibitory peptides and degree of hydrolysis (DH) of hydrolysates were measured. Moreover, we compared the difference in ACE-inhibitory activity between cow and goat milk. The results indicated that the DH increased with the increase in hydrolysis time. The alkaline protease-treated hydrolysates exhibited the highest DH value and ACE-inhibitory activity. Additionally, the ACE-inhibitory activity of hydrolysates from goat milk was higher than that of cow milk-derived hydrolysates. Therefore, goat milk is a good source to obtain bioactive peptides with ACE-inhibitory activity, as compared with cow milk. A proper enzyme to produce ACE-inhibitory peptides is important for the development of functional milk products and will provide the theoretical basis for industrial production.


1999 ◽  
Vol 66 (3) ◽  
pp. 431-439 ◽  
Author(s):  
YOO-KYEONG KIM ◽  
SUN YOON ◽  
DAE-YEUL YU ◽  
BO LÖNNERDAL ◽  
BONG-HYUN CHUNG

Recombinant human αs1-casein expressed in Escherichia coli was purified and digested with trypsin in an attempt to find peptides with angiotensin-I-converting enzyme (ACE) inhibitory activity. Three novel ACE inhibitory peptides, A-II, B-II and C, were isolated and their amino acid sequences identified as Tyr–Pro–Glu–Arg (residues 8–11), Tyr–Tyr–Pro–Gln–Ile–Met–Gln–Tyr (residues 136–143) and Asn–Asn–Val–Met–Leu–Gln–Trp (residues 164–170) respectively. ACE inhibitory activities were measured for the corresponding synthetic peptides, and the ACE IC50 (the amount of peptide causing 50% inhibition of ACE activity) values of A-II, B-II and C estimated to be 132·5, 24·8 and 41·0 μmol/l respectively. Peptides A-II and C were resistant to further digestion by pepsin, whereas peptide B-II was hydrolysed. All three peptides were resistant to digestion by chymotrypsin. These ACE inhibitory peptides may prove useful for oral administration in the treatment of hypertension.


Sign in / Sign up

Export Citation Format

Share Document