scholarly journals Chemical Analysis of Lepidium meyenii (Maca) and Its Effects on Redox Status and on Reproductive Biology in Stallions

Molecules ◽  
2019 ◽  
Vol 24 (10) ◽  
pp. 1981 ◽  
Author(s):  
Simona Tafuri ◽  
Natascia Cocchia ◽  
Domenico Carotenuto ◽  
Anastasia Vassetti ◽  
Alessia Staropoli ◽  
...  

The present study was conducted to assess the chemical composition of Yellow Maca (Lepidium meyenii) and its biological activity on stallions following oral administration of hypocotyl powder. Maca was subjected to methanolic extraction and the chemical analysis was carried out by LC-MS-QTOF (liquid chromatography-mass spectrometry). Our results showed that Maca contains some effective antioxidants, a high percentage of glucosinolates, and other important components with a high antioxidant capacity. To evaluate the plant biological activity in stallions fed with Maca powder for 60 days, the redox status and some reproductive parameters were investigated. Blood and semen samples were collected at 0, 30, 60, and 90 days from the beginning of this study. Blood samples showed a decrease of the reactive oxygen metabolites, evaluated by d-ROMs test, and an increase of the antioxidant barrier in terms of biological antioxidant potential (BAP test), powerful oxidant capacity (OXY-Adsorbent test), and thiols evaluation (-SHp test). Furthermore, semen samples showed a positive trend during Maca administration in the following parameters: ejaculate volumes and sperm concentrations, total and progressive motility, and acrosome integrity.

2019 ◽  
Author(s):  
Toshiyuki Matsuura ◽  
Hiroki Kaneko ◽  
Kei Takayama ◽  
Rei Shibata ◽  
Keiko Kataoka ◽  
...  

Abstract Background : Previously,we showed that serum malondialdehyde (MDA) was significantly higher in patients with neovascular age-related macular degeneration (nAMD) than in those without AMD. The Diacron reactive oxygen metabolites(d-ROMs) andbiologicalantioxidant potential (BAP) tests are known markers ofoxidative stress. The aim of this study was to use d-ROMs and BAP tests to evaluate changes in systemic oxidative stressin patients with nAMD. Methods : Blood serum samples were collected from 34 patients with nAMD (mean age: 76.5 ± 7.7 years; 22 men) and 20 control subjects (mean age: 62.9± 14.0 years; 10 men), and d-ROMs and BAP tests were examined. Results : In men, the mean level of d-ROMs for the nAMD patients was significantly higher than that for the controls (312.0 ± 52.4 vs. 275.1 ± 45.5 U.CARR, respectively; P < .05). There was a significant correlation between d-ROM level and CNV lesion area in the male nAMD group (r =.42, P = .05). There were no significant differences in mean BAP test results between the nAMD patients and controls for either sex (men: 2241 ± 549 vs. 2136 ± 246 μmol/L; women: 2263 ± 292 vs. 2335 ± 161 μmol/L). Conclusion : The d-ROMs test may provide a useful indicator of nAMD in men but not in women.


Antioxidants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1056
Author(s):  
Simone Marconcini ◽  
Enrica Giammarinaro ◽  
Saverio Cosola ◽  
Giacomo Oldoini ◽  
Annamaria Genovesi ◽  
...  

Background: Periodontal infection may contribute to poor glycemic control and systemic inflammation in diabetic patients. The aim of the present study is to evaluate the efficacy of non-surgical periodontal treatment in diabetic patients by measuring oxidative stress outcomes. Methods: Sixty diabetic patients with periodontitis were enrolled, treated with scaling and full-mouth disinfection, and randomly prescribed chlorhexidine mouthwash, antioxidant mouthwash, or ozone therapy. Reactive oxygen metabolites (ROMs), periodontal parameters, and glycated hemoglobin were measured at baseline and then at 1, 3, and 6 months after. Results: At baseline, all patients presented with pathologic levels of plasmatic ROM (388 ± 21.36 U CARR), higher than the normal population. Probing depth, plaque index, and bleeding on probing values showed significant clinical improvements after treatment, accompanied by significant reductions of plasma ROM levels (p < 0.05). At the 6-month evaluation, the mean ROM relapsed to 332 ± 31.76 U CARR. Glycated hemoglobin decreased significantly (∆ = −0.52 units) after treatment. Both the test groups showed longer-lasting improvements of periodontal parameters. Conclusion: In diabetic patients, periodontal treatment was effective at reducing plasma ROM, which is an indicator of systemic oxidative stress and inflammation. The treatment of periodontal infection might facilitate glycemic control and decrease systemic inflammation.


1988 ◽  
Vol 72 (1) ◽  
pp. 19-27 ◽  
Author(s):  
Peter Görög ◽  
Jeremy D. Pearson ◽  
Vijay V. Kakkar

2001 ◽  
Vol 114 (8) ◽  
pp. 1515-1520 ◽  
Author(s):  
A.J. Rosenspire ◽  
A.L. Kindzelskii ◽  
H.R. Petty

Previously, we have demonstrated that NAD(P)H levels in neutrophils and macrophages are oscillatory. We have also found that weak ultra low frequency AC or pulsed DC electric fields can resonate with, and increase the amplitude of, NAD(P)H oscillations in these cells. For these cells, increased NAD(P)H amplitudes directly signal changes in behavior in the absence of cytokines or chemotactic factors. Here, we have studied the effect of pulsed DC electric fields on HT-1080 fibrosarcoma cells. As in neutrophils and macrophages, NAD(P)H levels oscillate. We find that weak (~10(-)(5) V/m), but properly phased DC (pulsed) electric fields, resonate with NAD(P)H oscillations in polarized and migratory, but not spherical, HT-1080 cells. In this instance, electric field resonance signals an increase in HT-1080 pericellular proteolytic activity. Electric field resonance also triggers an immediate increase in the production of reactive oxygen metabolites. Under resonance conditions, we find evidence of DNA damage in HT-1080 cells in as little as 5 minutes. Thus the ability of external electric fields to effect cell function and physiology by acting on NAD(P)H oscillations is not restricted to cells of the hematopoietic lineage, but may be a universal property of many, if not all polarized and migratory eukaryotic cells.


1987 ◽  
Vol 253 (4) ◽  
pp. C495-C499 ◽  
Author(s):  
P. D. Walker ◽  
S. V. Shah

Agents that affect mitochondrial respiration have been shown to enhance the generation of reactive oxygen metabolites. On the basis of the well-demonstrated ability of gentamicin to alter mitochondrial respiration (stimulation of state 4 and inhibition of state 3), it was postulated that gentamicin may enhance the generation of reactive oxygen metabolites by renal cortical mitochondria. The aim of this study was to examine the effect of gentamicin on the production of hydrogen peroxide (measured as the decrease in scopoletin fluorescence) in rat renal cortical mitochondria. The hydrogen peroxide generation by mitochondria was enhanced from 0.17 +/- 0.02 nmol . mg-1 . min-1 (n = 14) in the absence of gentamicin to 6.21 +/- 0.67 nmol . mg-1 . min-1 (n = 14) in the presence of 4 mM gentamicin. This response was dose dependent with a significant increase observed at even the lowest concentration of gentamicin tested, 0.01 mM. Production of hydrogen peroxide was not increased when gentamicin was added to incubation media in which mitochondria or substrate was omitted or heat-inactivated mitochondria were used. The gentamicin-induced change in fluorescence was completely inhibited by catalase (but not by heat-inactivated catalase), indicating that the decrease in fluorescence was due to hydrogen peroxide. Thus this study demonstrates that gentamicin enhances the production of hydrogen peroxide by mitochondria. Because of their well-documented cytotoxicity, reactive oxygen metabolites may play a critical role in gentamicin nephrotoxicity.


1994 ◽  
Vol 267 (1) ◽  
pp. H308-H318 ◽  
Author(s):  
G. Ambrosio ◽  
P. Golino ◽  
I. Pascucci ◽  
M. Rosolowsky ◽  
W. B. Campbell ◽  
...  

Reactive oxygen metabolites have been reported to affect platelet aggregation. However, this phenomenon is still poorly understood. In the present study we investigated the effects of superoxide radical and hydrogen peroxide (H2O2) on platelet function in vitro and correlated those effects to possible changes of platelet concentrations of cyclic nucleotides and thromboxane, since these systems play a key role in the response of platelets to activating stimuli. Human platelets were exposed to xanthine-xanthine oxidase (X-XO), a system that generates both superoxide radicals and H2O2. Sixty seconds of incubation with X-XO impaired aggregation in response to ADP (by 48%), collagen (by 71%), or the thromboxane mimetic U-46619 (by 50%). This effect was reversible and occurred in the absence of cell damage. Impairment of aggregation in platelets exposed to X-XO was due to H2O2 formation, since it was prevented by catalase but not by superoxide dismutase. Similarly, incubation with the pure H2O2 generator glucose-glucose oxidase also markedly inhibited ADP-induced platelet aggregation in a dose-dependent fashion. Impaired aggregation by H2O2 was accompanied by a > 10-fold increase in platelet concentrations of guanosine 3',5'-cyclic monophosphate (cGMP), whereas adenosine 3',5'-cyclic monophosphate levels remained unchanged. The inhibitory role of increased cGMP formation was confirmed by the finding that H2O2-induced impairment of platelet aggregation was largely abolished when guanylate cyclase activation was prevented by incubating platelets with the guanylate cyclase inhibitor, LY-83583. Different effects were observed when arachidonic acid was used to stimulate platelets. Exposure to a source of H2O2 did not affect aggregation to arachidonate. Furthermore, in the absence of exogenous H2O2, incubation with catalase, which had no effects on platelet response to ADP, collagen, or U-46619, virtually abolished platelet aggregation and markedly reduced thromboxane B2 production (to 44% of control) when arachidonic acid was used as a stimulus. In conclusion, our data demonstrate that H2O2 may exert complex effects on platelet function in vitro. Low levels of endogenous H2O2 seem to be required to promote thromboxane synthesis and aggregation in response to arachidonic acid. In contrast, exposure to larger (but not toxic) concentrations of exogenous H2O2 may inhibit aggregation to several agonists via stimulation of guanylate cyclase and increased cGMP formation.


1992 ◽  
Vol 263 (6) ◽  
pp. H1892-H1900 ◽  
Author(s):  
M. D. Menger ◽  
D. Steiner ◽  
K. Messmer

“No reflow” has been implicated as prominent phenomenon in microvascular injury associated with ischemia-reperfusion (I/R). The objectives of this study were 1) to elucidate the significance of no reflow in microvascular I/R injury of striated muscle and 2) to determine whether reactive oxygen metabolites play a role in the development of postischemic no reflow. By use of the hamster dorsal skinfold preparation and intravital microscopy, microvascular perfusion of capillaries and postcapillary venules of striated muscle was quantitatively assessed before and 30 min, 2 h, and 24 h after 4 h of tourniquet-induced ischemia. I/R was characterized by a significant reduction (P < 0.01) in functional capillary density to 35% of baseline values during initial reperfusion, with incomplete recovery after 24 h (n = 9). In addition, capillary perfusion was found to be extremely heterogeneous, and wall shear rate in postcapillary venules was significantly decreased (P < 0.01). Treatment with either superoxide dismutase (SOD; n = 9) or allopurinol (n = 9) resulted in maintenance of capillary density of 60% of baseline (P < 0.05). Furthermore, I/R-induced capillary perfusion inhomogeneities and decrease of wall shear rate in venules were attenuated significantly (P < 0.01) by SOD and allopurinol. Thus part of capillary perfusion disturbances during I/R in striated muscle may be caused by increased postcapillary vascular resistance, probably mediated by reactive oxygen metabolites. However, the fact that in SOD- and allopurinol-treated animals 40% of the capillaries were still found to be nonperfused indicates that mechanisms other than oxygen radicals play an important role in the development of postischemic no reflow.


Sign in / Sign up

Export Citation Format

Share Document