scholarly journals It’s Only a Part of the Story: Analytical Investigation of the Inks and Dyes Used in the Privilegium Maius

Molecules ◽  
2019 ◽  
Vol 24 (12) ◽  
pp. 2197
Author(s):  
Elisa Calà ◽  
Fabio Gosetti ◽  
Monica Gulmini ◽  
Ilaria Serafini ◽  
Alessandro Ciccola ◽  
...  

The Privilegium maius is one of the most famous and spectacular forgeries in medieval Europe. It is a set of charters made in the 14th century upon commitment by Duke Rudolf IV, a member of the Habsburg family, to elevate the rank and the prestige of his family. These five charters, now kept at the Österreichisches Staatsarchiv in Vienna, have been subjected to a thorough interdisciplinary study in order to shed light on its controversial story. The charters are composed of pergamenaceous documents bound to wax seals with coloured textile threads. The present contribution concerns the characterisation of the inks used for writing and of the dyes used to colour to the threads: Are they compatible with the presumed age of the charters? Though showing only a part of the whole story of the charters, dyes analysis could contribute in assessing their complex history from manufacturing to nowadays. The dyes were characterised with non-invasive in situ measurements by means of fibre optic (FORS) and with micro-invasive measurements by means of Surface Enhanced Raman Spectroscopy (SERS) and High-Performance Liquid Chromatography with Mass Spectrometry (HPLC-MS) analysis. The results showed that the threads of four of the charters (three dyed with madder, one with orchil) were apparently coloured at different dyeing stages, then re-dyed in the 19–20th century.

Author(s):  
Elisa Calà ◽  
Fabio Gosetti ◽  
Monica Gulmini ◽  
Ilaria Serafini ◽  
Alessandro Ciccola ◽  
...  

The Privilegium maius is one of the most famous and spectacular forgeries in medieval Europe. It is a set of charters made in 14th century upon commitment by duke Rudolf IV, a member of the Habsburg family, to elevate the rank and the prestige of his family. These five charters, now kept at the Österreichisches Staatsarchiv in Vienna, have been subjected to a thorough interdisciplinary study in order to shed light on its controversial story. The charters are composed by pergamenaceous documents bound to wax seals with coloured textile threads. The present contribution concerns the characterisation of the inks used for writing and of the dyes used to colour to the threads: are they compatible with the presumed age of the charters? Though showing only a part of the whole story of the charters, dyes analysis could contribute in assessing their complex history from manufacturing to nowadays. The dyes were characterised with non-invasive in situ measurements by means of FORS and with micro-invasive measurements by means of SERS and HPLC-MS analysis. The results showed that the threads of four of the charters (three dyed with madder, one with orchil) were apparently coloured at different dyeing stages, then re-dyed in the 19th-20th century.


Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 886
Author(s):  
Massimo Rippa ◽  
Riccardo Castagna ◽  
Domenico Sagnelli ◽  
Ambra Vestri ◽  
Giorgia Borriello ◽  
...  

Brucella is a foodborne pathogen globally affecting both the economy and healthcare. Surface Enhanced Raman Spectroscopy (SERS) nano-biosensing can be a promising strategy for its detection. We combined high-performance quasi-crystal patterned nanocavities for Raman enhancement with the use of covalently immobilized Tbilisi bacteriophages as high-performing bio-receptors. We coupled our efficient SERS nano-biosensor to a Raman system to develop an on-field phage-based bio-sensing platform capable of monitoring the target bacteria. The developed biosensor allowed us to identify Brucella abortus in milk by our portable SERS device. Upon bacterial capture from samples (104 cells), a signal related to the pathogen recognition was observed, proving the concrete applicability of our system for on-site and in-food detection.


Nanoscale ◽  
2015 ◽  
Vol 7 (40) ◽  
pp. 16952-16959 ◽  
Author(s):  
Kaige Zhang ◽  
Gongke Li ◽  
Yuling Hu

The surface-enhanced Raman spectroscopy (SERS) technique is of great importance for insight into the transient reaction intermediates and mechanistic pathways involved in heterogeneously catalyzed chemical reactions under actual reaction conditions, especially in water.


RSC Advances ◽  
2016 ◽  
Vol 6 (65) ◽  
pp. 60152-60159 ◽  
Author(s):  
Zhiyun Zhang ◽  
Huiyuan Guo ◽  
Yingqing Deng ◽  
Baoshan Xing ◽  
Lili He

A surface enhanced Raman spectroscopic (SERS) mapping technique was applied to qualitatively detect and characterize gold nanoparticles on and in spinach leaves in situ.


ACS Nano ◽  
2009 ◽  
Vol 3 (11) ◽  
pp. 3529-3536 ◽  
Author(s):  
Elina A. Vitol ◽  
Zulfiya Orynbayeva ◽  
Michael J. Bouchard ◽  
Jane Azizkhan-Clifford ◽  
Gary Friedman ◽  
...  

Author(s):  
Bao-Ying Wen ◽  
Qing-Qi Chen ◽  
Petar M. Radjenovic ◽  
Jin-Chao Dong ◽  
Zhong-Qun Tian ◽  
...  

As energy demands increase, electrocatalysis serves as a vital tool in energy conversion. Elucidating electrocatalytic mechanisms using in situ spectroscopic characterization techniques can provide experimental guidance for preparing high-efficiency electrocatalysts. Surface-enhanced Raman spectroscopy (SERS) can provide rich spectral information for ultratrace surface species and is extremely well suited to studying their activity. To improve the material and morphological universalities, researchers have employed different kinds of nanostructures that have played important roles in the development of SERS technologies. Different strategies, such as so-called borrowing enhancement from shell-isolated modes and shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS)-satellite structures, have been proposed to obtain highly effective Raman enhancement, and these methods make it possible to apply SERS to various electrocatalytic systems. Here, we discuss the development of SERS technology, focusing on its applications in different electrocatalytic reactions (such as oxygen reduction reactions) and at different nanostructure surfaces, and give a brief outlook on its development. Expected final online publication date for the Annual Review of Physical Chemistry, Volume 72 is April 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Sign in / Sign up

Export Citation Format

Share Document